NHERI Lehigh Experimental Capabilities and Protocols

James Ricles
Principle Investigator
Thomas Marullo
IT Systems Administrator

NHERI Lehigh EF

Outline

- Experimental Capabilities
- Test Beds
- Equipment
- Experimental Protocols
- IT Operations
- Cyber Infrastructure

Large-Scale Hybrid Simulation

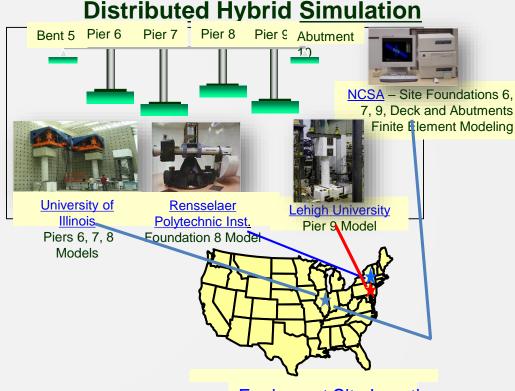
HS EQ Simulation of Buildings with SC-MRF

- Large-Scale Hybrid Simulation
- Large-Scale Real-time Hybrid Simulation

RTHS EQ Simulation of Buildings with Dampers

- Large-Scale Hybrid Simulation
- Large-Scale Real-time Hybrid Simulation
- Large-Scale Real-time Hybrid Simulation with Multiple Experimental Substructures

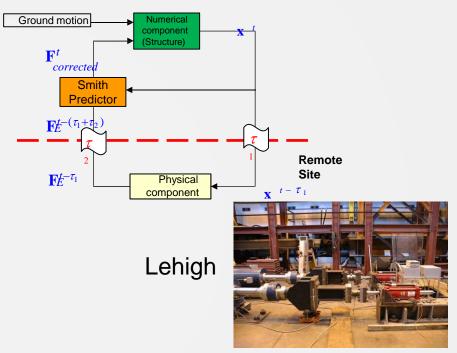
RTHS EQ Simulation of Building with Multiple Dampers



- Large-Scale Hybrid Simulation
- Large-Scale Real-time Hybrid Simulation
- Large-Scale Real-time Hybrid Simulation with Multiple Experimental Substructures
- Geographically Distributed Hybrid Simulation

Equipment Site Locations

Distributed RTHS EQ Simulation of I-10 Collector Bridge



- Large-Scale Hybrid Simulation
- Large-Scale Real-time Hybrid Simulation
- Large-Scale Real-time Hybrid Simulation with Multiple Experimental Substructures
- Geographically Distributed Hybrid Simulation
- Geographically Distributed Realtime Hybrid Simulation

UIUC

RTHS EQ Simulation of Building with MR Dampers (Kim, Christenson)

- Large-Scale Hybrid Simulation
- Large-Scale Real-time Hybrid Simulation
- Large-Scale Real-time Hybrid Simulation with Multiple Experimental Substructures
- Geographically Distributed Hybrid Simulation
- Geographically Distributed Realtime Hybrid Simulation
- Predefined load or displacements (Quasi-static testing or characterization testing)

Temperature Control Chamber

Characterization of Full-scale Semiactive and Passive Dampers

- Large-Scale Hybrid Simulation
- Large-Scale Real-time Hybrid Simulation
- Large-Scale Real-time Hybrid Simulation with Multiple Experimental Substructures
- Geographically Distributed Hybrid Simulation
- Geographically Distributed Realtime Hybrid Simulation
- Predefined load or displacements (Quasi-static testing or characterization testing)

Characterization of Large-scale RC Coupled Shear Wall System

- Large-Scale Hybrid Simulation
- Large-Scale Real-time Hybrid Simulation
- Large-Scale Real-time Hybrid Simulation with Multiple Experimental Substructures
- Geographically Distributed Hybrid Simulation
- Geographically Distributed Realtime Hybrid Simulation
- Predefined load or displacements (Quasi-static testing or characterization testing)
- Dynamic testing

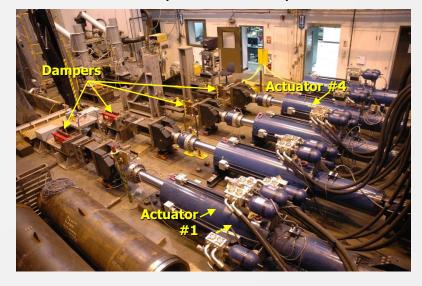
Multi-directional Dynamic Testing of Pipe Couplers

Bracing Frame

- Perform experiments (e.g., characterization tests, realtime hybrid simulations) on test frame specimens of:
 - ➤ Up to 13.7 m (45 ft) in height
 - ➤ Up to 11 m (36 ft) in width

- Non-Structural Component Seismic Simulator
 - Enables multi-directional realtime hybrid simulation of nonstructural components and systems:
 - ➤ Up to 12.2 m (40 ft) in length
 - > Up to 3.1 m (10 ft) in width

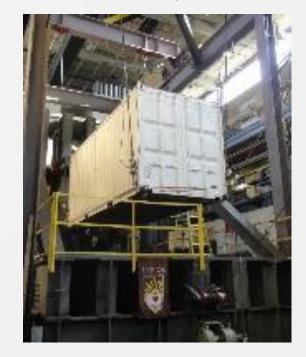
Multi-directional Real-time hybrid simulation of building piping system



Full-scale Damper Testbeds

- Enables full-scale damper tests:
 - Damper characterization tests
 - > Real-time hybrid simulations
- Stoke, velocity, and force capacity:
 - > +/- 500 mm (20 in.) stroke
 - ➤ 1140 mm/s (45 in/s) for 1700 kN actuators
 - > 840 mm/s (33 in/s) for 2300 kN actuators

Real-time hybrid simulation of building with four passive dampers

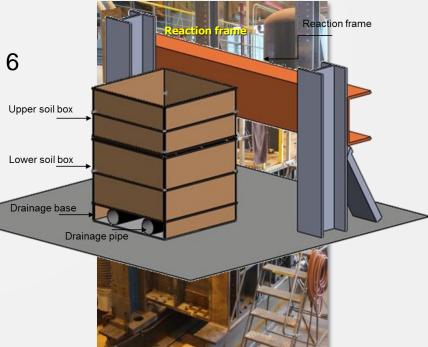


Tsunami Debris Impact Force Testbed

- Enables full-scale debris impact tests:
 - High speed DAQ; high speed 5000 fps cameras
 - High bandwidth, resolution load cells
 - Accelerometers, laser-displacement transducers

Real-time simulation of impact forces from tsunami shipping container debris

Reduced-scale Soil Box

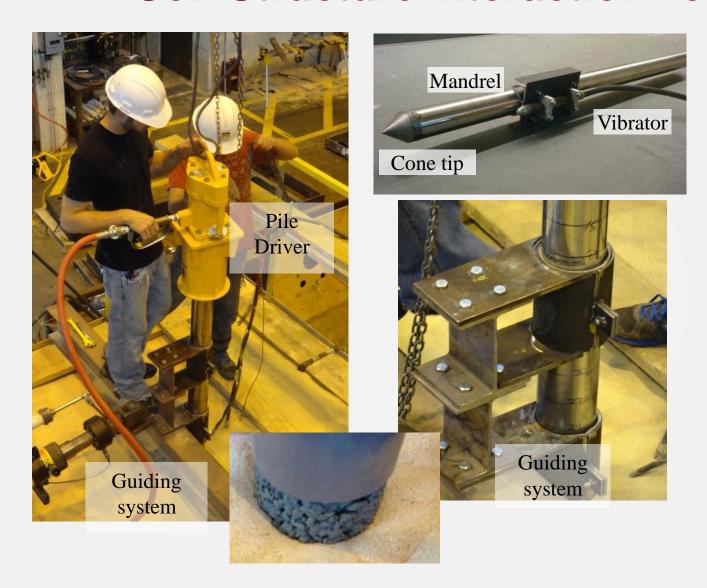

Enables soil-structure interaction research

Flexible designs (6 x 6 x 6 ft and 6 x 6 x 3 ft in size)

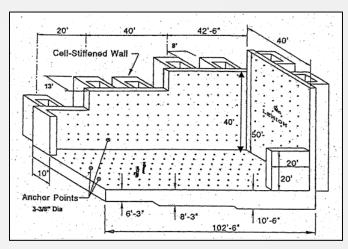
Actuators with load cells; data acquisition system

Sensors for soil and foundation response measurements

Advanced sensors - Digital Imaging Correlation Soil-foundation structure interaction testbed



Soil-Structure Interaction Testbed



Existing ATLSS Infrastructure

- 3-D Multi-directional reaction wall facility
 - 3-dimensional
 - Up to 15.2 m (50 ft) height
 - 1.5 m (5 ft) anchor point grid
- Strong floor
 - 12.2 m by 30.5 m (40 ft by 100 ft)
 - Anchor assembly capacity
 - 2,224 kN (500 kips) shear
 - 1,334 kN (300 kips) tension
- Hydraulic Supply System
- Over 30 Hydraulic Actuators
- Large array of Conventional Sensors
- Crane
- Skilled staff


NHERI Lehigh EF Hydraulic Equipment and Power

- Enables real-time EQ large scale demand to be imposed for up to 30 seconds
- **Hydraulic supply system (ATLSS)**
 - 5-120 gal/min variable axial piston pumps
- Accumulator System (NHERI)
 - 16 piston accumulators
 - 50.2 gal each
- 5 dynamic hydraulic actuators (NHERI)
 - Maximum load capacity
 - 2 actuators: 517 kips at 3000 psi
 - 3 actuators: 382 kips at 3000 psi
 - Stroke
 - +/- 19.7 in
 - Maximum velocity
 - 45 in/s for 382 kip actuators
 - 33 in/s for 517 kip actuators
- and HSMs (NHERI)

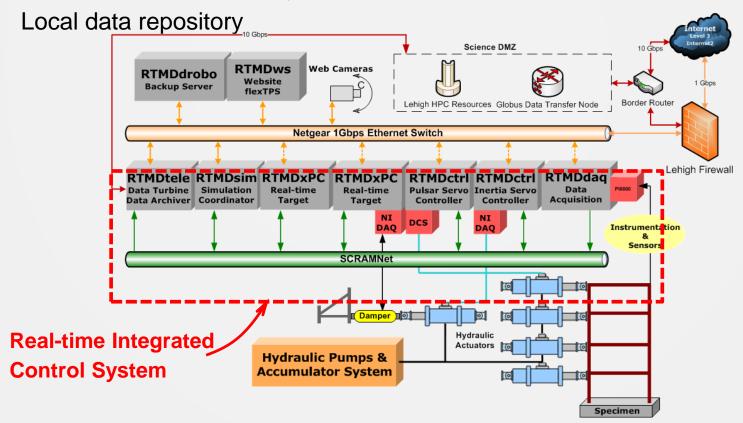
Other NHERI Lehigh EF Equipment

High Speed 304 Channel Data Acquisition System

- 2 xPCs for simulation coordination, including additional NI DAQ
- Two real-time servo-hydraulic controllers
- Sensors (displacement, accelerometers, inclinometers)
- Telepresence webcams
- Specs for all equipment found in Users Guide

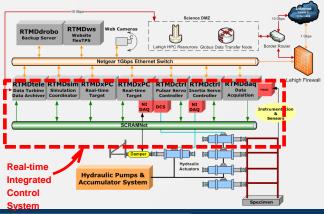
Instrumentation

- Displacement transducers
 - Strokes ranging from ±6.4mm (LVDTs) to 1524mm (linear potentiometers).
 - Temposonic position sensors with a ±760 mm stroke, to a ±1100 mm stroke.
 - All transducers are calibrated to within ±1% accuracy, with the LVDTs calibrated to within ±0.1%.
- Inclinometers ranging up to ±20 degrees with 1% accuracy.
- Each hydraulic actuator is equipped with a load cell.
 - All load cells are calibrated to within ±0.1% accuracy.



Other Major NHERI Lehigh EF Equipment

- Real-time Integrated Control System
 - Real-time simulation coordinator
 - Multiple xPCs for simulation coordination with additional DAQ
 - Two real-time servo-hydraulic controllers
 - High Speed 304 Channel Data Acquisition System
 - Real-time telepresence system



NHERI Lehigh EF Control Room

Control Center

- Houses Real-time Integrated Control System
- Camera Control
- Data Acquisition System and Server
- Data Streaming System
 - ➤ Video
 - ➤ Sensors
- Video Displays
- Local Repository

NHERI Lehigh EF non-NHERI Equipment

- Site leverages Non-NHERI equipment to provide capability, improve capacity and maintain throughput.
 - 30 Actuators
 - ATLSS Wineman Controller
 - 2 MTS 458 Controllers
 - MTS FlexTest 100 Controller
 - DAQ systems
 - Trilion System for Digital Image Correlation full field displacement and strain
 - Transducers over 96 LVDTs, 62 load cells, Temposonics (12 ATLSS)
 - SSI instrumentation

NHERI Lehigh EF non-NHERI Equipment

Equipment	Year
	Acquired
Multi-Directional Reaction Wall System	
15.2m to 6.1m tall L-shaped reaction wall	1989
30.5m x 12.2m strong test floor	1989
Hydraulic Equipment	
20.7 MPa (3000psi) Hydraulic power system with 2270 liters/min	1988,1992**
Central hydraulic distribution system	1988,1992**
6-Vickers Service hydraulic manifolds (1500 liters/min)	n/a
Hydraulic Loading Equipment	
Sactec 2670 kN universal test machine	1992
MTS 245 kN fatigue test machine	1992
Hydraulic Actuators	
3-2680kN Hanna, +-750 mm stroke, 20mm/sec max. velocity*	1997
2-2050kN Hanna, +-480 mm stroke, 25mm/sec max. velocity*	1988
4-1500kN Hanna, +-480 mm stroke, 35mm/sec max. velocity*	1988
2-150kN Hanna, +-125 mm stroke, 35mm/sec max. velocity*	1988
2-1050kN Hanna +-125 mm stroke, 50mm/sec max. velocity*	1988
2-607kN Hanna, +-300 mm stroke, 80mm/sec max. velocity*	1988
8-580kN Hanna, +-125 mm stroke, 60mm/sec max. velocity*	1992
2-1000kN Hanna, +-125 mm stroke, 35mm/sec max. velocity*	1992

Users Guide Available ATLSS Actuators

https://lehigh.designsafe-ci.org/resources

ATLSS Actuators

Instrumentation

Digital imaging correlation (DIC) systems.

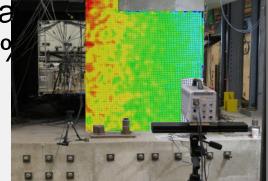
Utilize the 3D

 Works on bot simplifying sa

 The same se and large obj the range of (

rge nge

Figure F.4 DIC System


NEES@Lehigh Coupled Shear Wall Test Specimen with Multi-Directional Loading

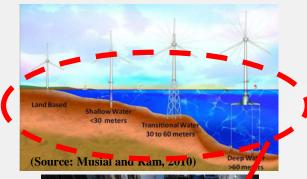
ethod.

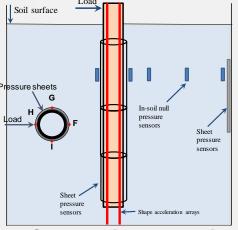
r pattern, thus

to measure small

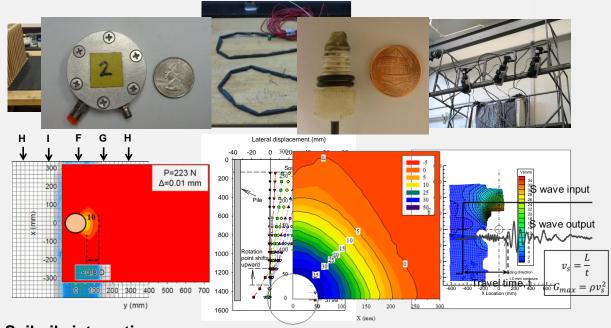
m) a 100%

Digital Imaging Correlation System: reinforced concrete coupled-shear wall test specimen measured pier vertical displacements (courtesy M. McGinnis)





Soil-Structure Interaction Instrumentation



Test Setup and instrumentation

- Advanced instrumentation to understand SSI of foundation systems under different loading conditions
- Combine with hybrid simulation to improve analytical substructure models, or
- Hybrid simulation with soil included in experimental substructure

Soil-pile interaction strays wave is the source sensors acceleration strays wave is the source sensors

NHERI Lehigh EF - ATLSS Space and Resources

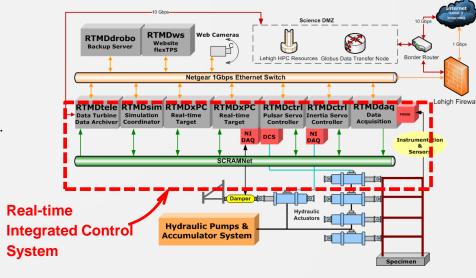
Specimen Prep

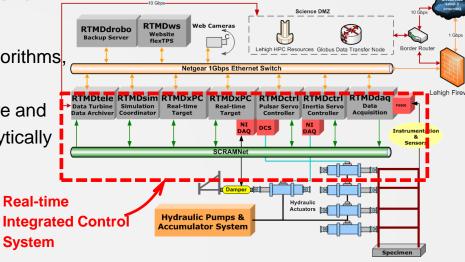
- Staging Areas
- Machine Shop
- Laboratories
 - Intelligent Structures
 - Mechanical Testing
 - Welding and Joining
 - Materials
 - Microscopy
- Offices: Faculty; Staff; Visiting Researchers
- Meeting Rooms: Auditorium; Conference Room
- Storage Areas
- Secure Facility

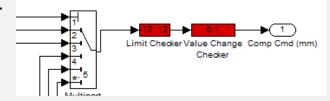
Specimen preparation staging area

Mechanical testing

Auditorium - ECO Activities

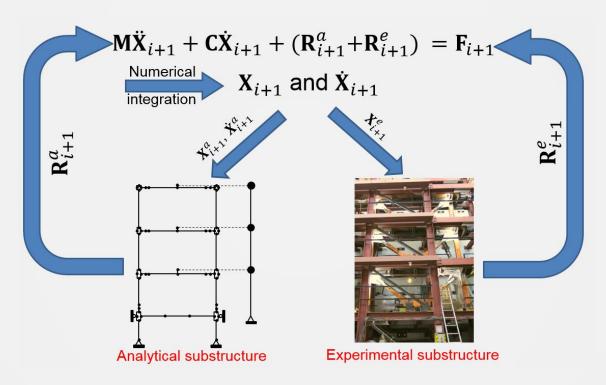



Real-time Integrated Control System


- Configured with experimental protocol required by user to perform test
 - Large-Scale Hybrid Simulation
 - Large-Scale Real-time Hybrid Simulation
 - Large-Scale Real-time Hybrid Simulation with Multiple Experimental Substructures
 - Geographically Distributed Hybrid Simulation
 - Geographically Distributed Real-time Hybrid Simulation
 - Predefined load or displacements (Quasi-static testing or characterization testing)
 - Dynamic testing
- Testing algorithms reside on an RTMDxPC and run in real time
 - Experiments can be run in true real-time (real-time hybrid simulation, real-time distributed hybrid simulation, dynamic testing, characterization testing).
 - Experiments can be run at an expanded time scale (hybrid simulation, distributed hybrid simulation, quasi-static testing).
- Distributed hybrid simulation via:
 - OpenFresco
 - Simcor
 - Custom software
- Flexible-designed system
 - Software and middleware packages developed by users or NHERI CI can be plugged in and utilized for testing

Real-time Integrated Control System

- Hydraulics-off mode
 - Used for validation of testing methods/algorithms, training, education
 - Both servo-hydraulic system, test structure and any analytical substructure modeled analytically
- Safety
 - Software limits are enabled on the System.
 - Hardware actuator positon stroke and test specimen displacement limit switches placed.
 - Emergency stop system activated throughout laboratory


Real-time Integrated Control System

- Hybrid simulation:
 - Robust integration algorithms: <u>Explicit Modified KR-α (MKR-α) Integration</u>
 <u>Algorithm Explicit unconditionally stable integration algorithm with controlled numerical energy dissipation (Kolay and Ricles, 2014).</u>
 - Adaptive actuator control: <u>Adaptive Time Series (ATS) Compensator</u> (Chae et al. 2013)
 - Negates both variable time delay and variable amplitude error response, using measured test structure state feedback to achieve accurate specimen displacements
 - No user-defined adaptive gains → applicable for large-scale structures susceptible to damage (i.e., concrete structures)
 - Time delay and amplitude response factor can be easily estimated from the identified values of the coefficients

Kolay, C., & Ricles, J. (2014). "Development of a family of unconditionally stable explicit direct integration algorithms with controllable numerical energy dissipation." *Earthquake Engineering & Structural Dynamics*, *43*(9), 1361–1380. DOI:10.1002/eqe.2401

Chae, Y., Kazemibidokhti, K., and Ricles, J.M. (2013). "Adaptive time series compensator for delay compensation of servo-hydraulic actuator systems for real-time hybrid simulation." *Earthquake Engineering and Structural Dynamics*, 42(11), 1697–1715, DOI: 10.1002/ eqe.2294.

- Real-time Integrated Control System
 - Hybrid simulation analytical substructure created by either
 - HybridFEM
 - OpenSees with OpenFresco interface

Schematic of hybrid simulation

HybridFEM

- MATLAB and SIMULINK based computational modeling and simulation coordinator software for dynamic time history analysis of inelastic-framed structures and performing real-time hybrid simulation
- xPC architecture facilitates real-time testing through multi-rate processing
- Run Modes
 - MATLAB script for numerical simulation
 - SIMULINK modeling for Real-Time Hybrid simulation with experimental elements via xPCs, and hydraulics-off for training and validation of user algorithms.
- User's Manual for training

HybridFEM

Configuration Options:

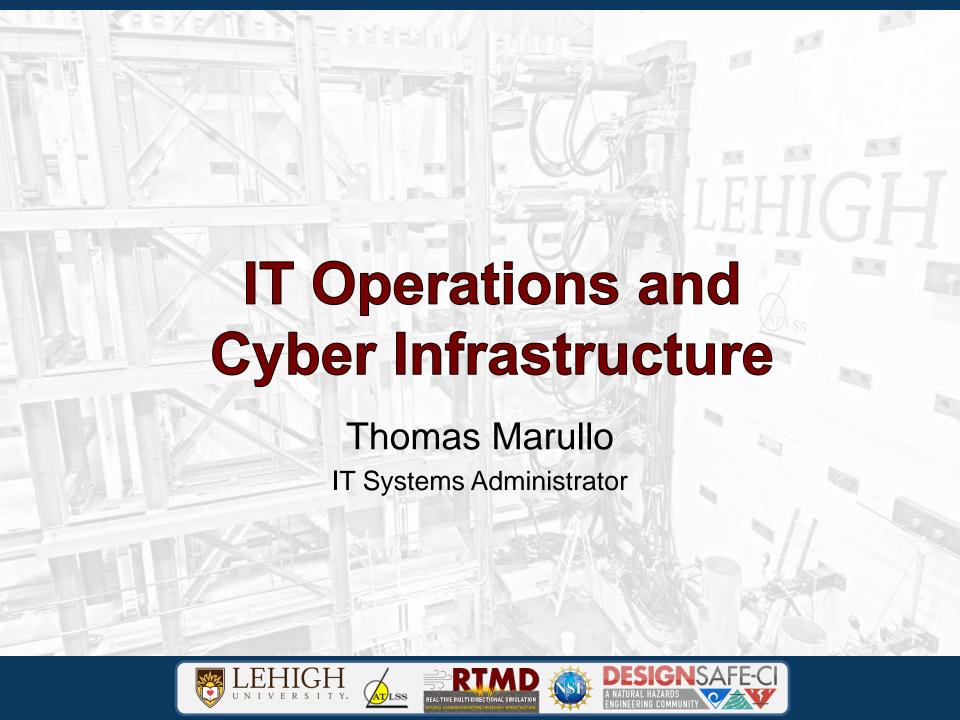
- Coordinate system of nodes
- Boundary, constraint and restraint conditions
- Elements
 - Elastic beam-column
 - Elastic spring
 - Inelastic beam-column stress resultant element
 - Non-linear spring
 - Displacement-based NL beam-column fiber element
 - Force-based beam NL column fiber element
 - Zero-length
 - 2D NL planar panel zone
 - Elastic beam-column element with geometric stiffness
- Geometric nonlinearities
- Steel wide flange sections (link to AISC shapes Database)
- Reinforced concrete sections
- Structural mass & inherent damping properties
- Adaptable integration methods

- Materials
 - Elastic
 - Bilinear elasto-plastic
 - Hysteretic
 - Bouc-Wen
 - Trilinear
 - Stiffness degrading
 - Concrete
 - Steel

Users Guide

 Details of the Equipment Specifications, Experimental Protocols, and Equipment Inventory are given in the User's Guide

https://lehigh.designsafe-ci.org/resources/



Overview

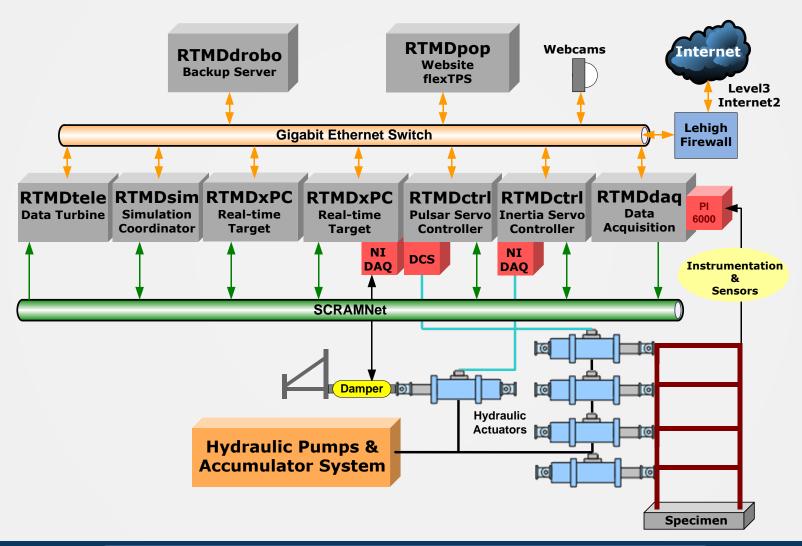
- IT Infrastructure and Equipment
- Cybersecurity and Risk Mitigation
- Software Capabilities
- User Training and Testing

IT Mission

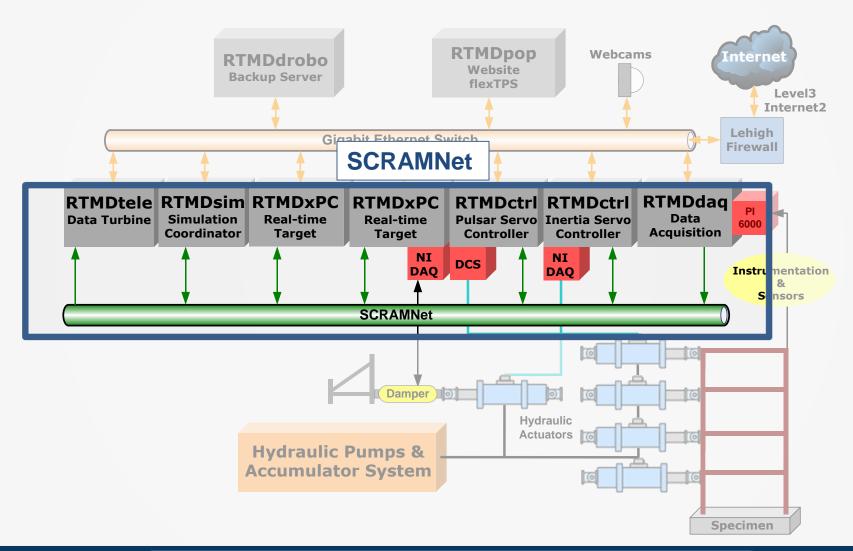
- Design IT Architecture from the ground up
- Complete control of all IT aspects to facilitate all types of required simulation techniques

2004 Present

RTMD Control Room



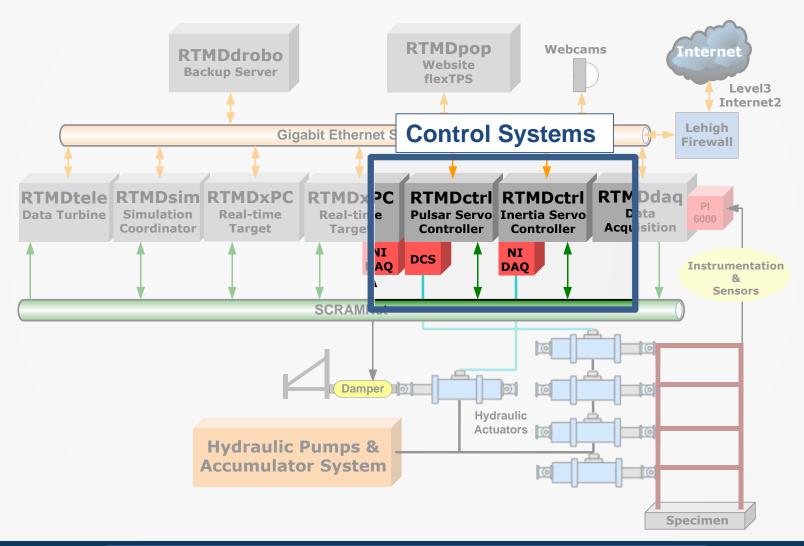
IT Infrastructure



IT Infrastructure

SCRAMNet

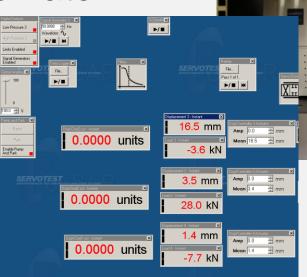
- Shared memory space for multiple systems
- High speed communication over fiber optics
- Mathworks/Java/C++ Support
- Flexible memory structure for defining multiple control and DAQ systems



IT Infrastructure

RTMDctrl

Servotest Pulsar Control System


Configurable servo-control system for

hydraulics actuator control

1024Hz control rate

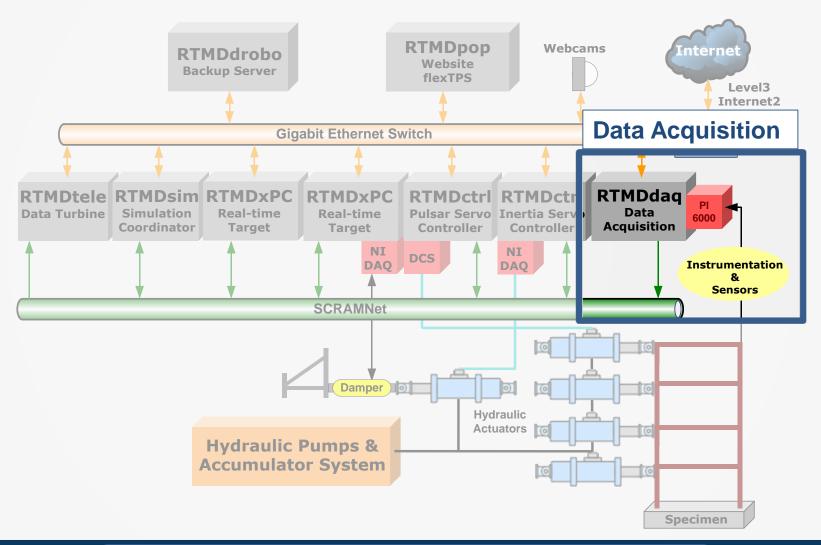
 Fine tuning of PID loops

 Customizable interface

RTMDctrl

Wineman INERTIA Control System

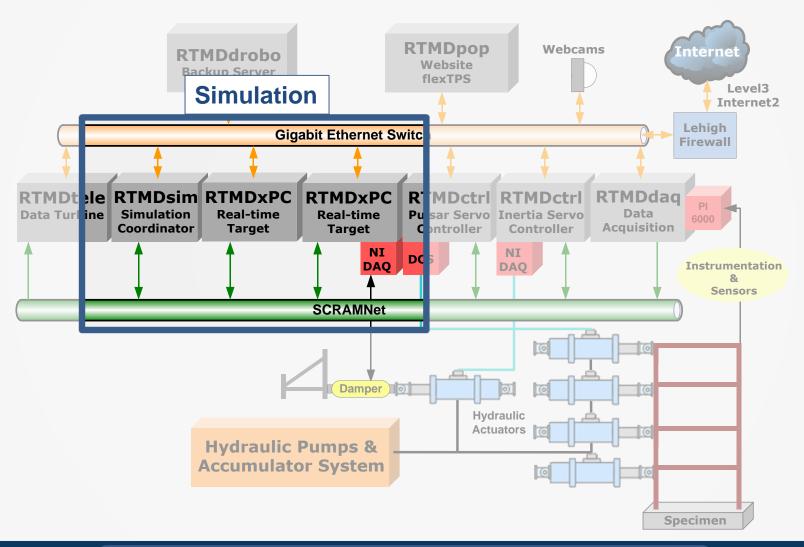
- Unlimited multi-mode closed-loop control
- Integrated test editor
- Integrated with various NI modules
- Integrated PID control loop tuning
- Complete access to tuning system variables
- Programmable control and DAQ rates



IT Infrastructure

RTMDdaq

- Pacific Instruments 6000
 Data Acquisition System
 - 304 channels, 384 expandable
 - Voltage, Strain, Thermocouple
 - Variable sampling rates
 - 4 kHz for Real-time Testing
 - Sensor list exporting for archival



IT Infrastructure

Simulation – RTMDsim/RTMDxPC

- Host-Target configuration
 - Real-time and custom applications
- Dell i7 Precision Workstation

- SCCC COLUMN TO THE PARTY OF THE
- High power workstation for execution and processing
- Speedgoat xPC Targets (Simulink Real-time)
 - Dedicated Intel i7 4Ghz real-time systems
- Multiple Targets
 - Defined roles
 - Grid processing for larger and more complex models

RTMDsim

- Workstation/Host
 - Mathworks suite

Coordinator of synchronized control and data

acquisition

 Hydraulics on/off testing – numerical simulation for safety, validation & training

Process and analyze data

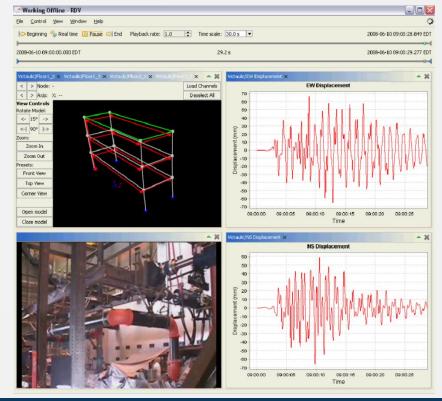
RTMDxPC

- CPU performance up to 4 GHz
- Industrial quality design for robustness
- Multi-core support for parallel processing
- Daisy chaining
- Available modules for DAQ and control
- Simple interface with SIMULINK and custom code
- Plug and Play software Architecture

IT Infrastru Telepresence **RTMDpop Webcams RTMDdrobo** Internet Website **Backup Server flexTPS Data Server** Level3 Internet2 Lehigh **Gigabit Ethernet Switch Firewall RTMDdag** RTMDtele TMDsim **RTMDxPC** RTMDctrl RTMDctrl **Real-time Data Turbine** Simulation Real-time Pulsar Servo Inertia Servo Data Acquisition **Target** oordinator Target Controller Controller NI NI DCS DAQ Instrumentation DAQ Sensors **SCRAMNet** Hydraulic Actuators To **Hydraulic Pumps & Accumulator System Specimen**

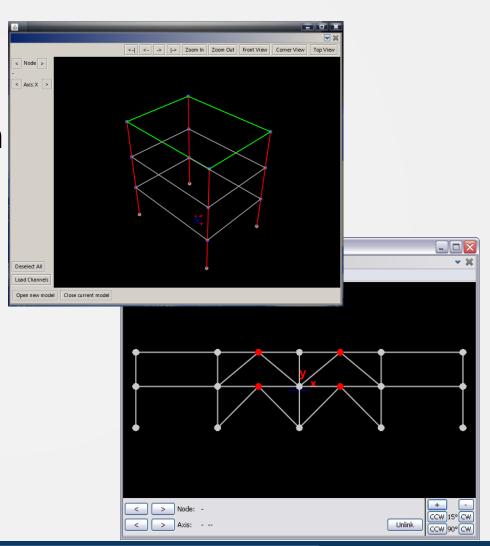
Telepresence

- Data Turbine (RBNB) (dataturbine.org)
 - Aggregates data from SCRAMNet using RTMD tools to define channel list, sample rate and duration
 - Streaming of data and images locally and remotely
 - Additional storage archive of test data



RDV

- Real-Time Data Viewer
 - Connect from anywhere on any system
 - Invaluable tool for visualizing
 Real-Time Hybrid
 Simulations



3D Model Panel for RDV

- 3D Modeling for RDV
- Real-time visualization complete structural system in hybrid simulation
- REU development

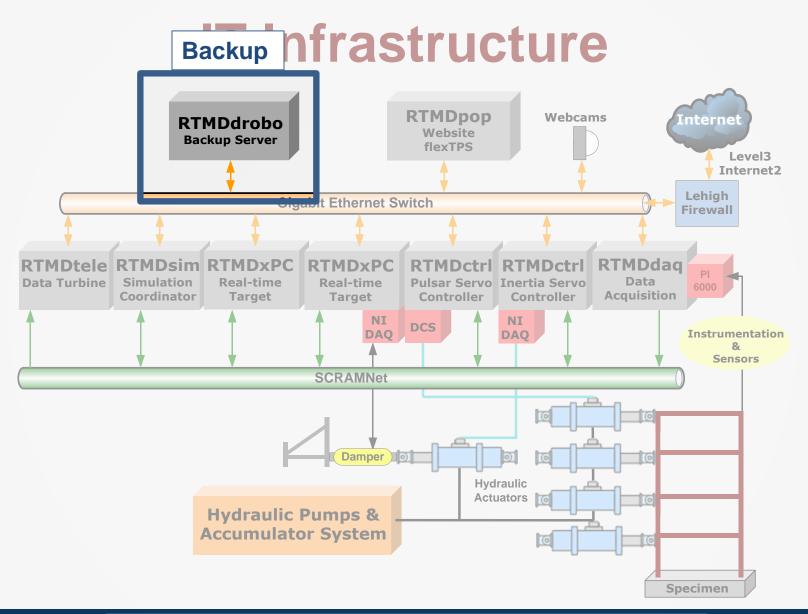
Telepresence

Video/Imaging systems

- (4) Sony SNC-EP550 HD portable network cameras
- (9) GoPro Hero 3 Black camcorders
- (2) Axis 2401 fixed network web cameras
- (2) Axis 205 fixed network web cameras
- (2) Sony SNC-RZ30N portable network cameras
- Nikon D70 D-SLR camera
- HD camcorders available upon request through Lehigh

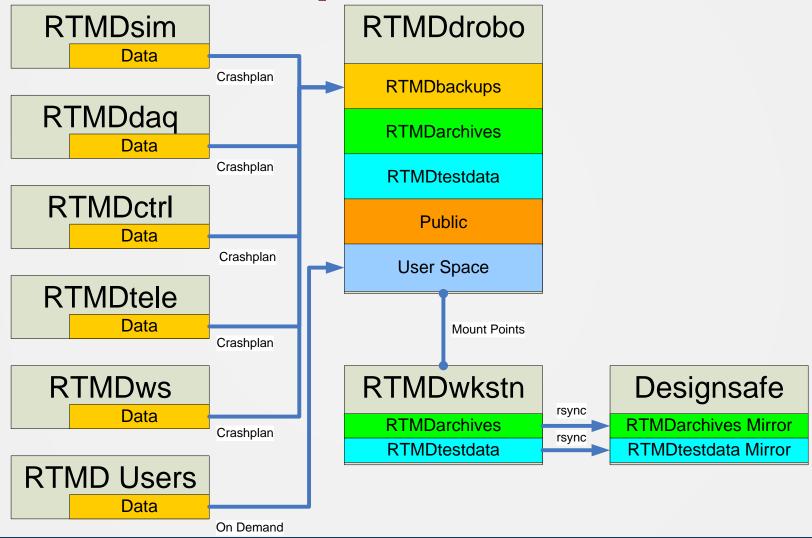
Blue Iris Software

- Portal for all users to access and control web cameras
- Archived video available for previous experiments



RTMDdrobo

- Data Robotics DroboPro FS
 - 8 hard drive slots, 32 TB capacity
- Dual-disk Redundancy
- Network Attached Storage
- Public and Private storage



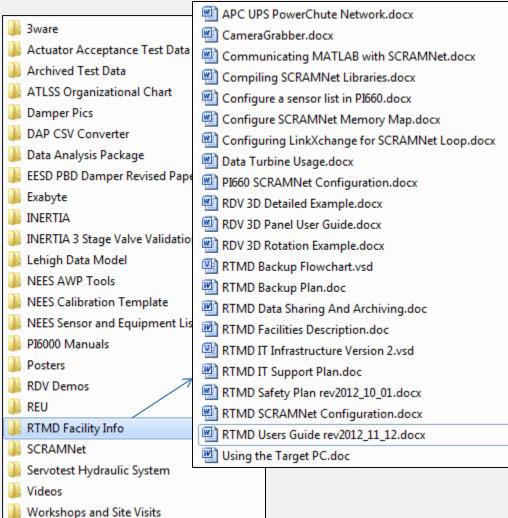
Backup Procedure

Cyber Security

- Weekly updates of all workstations and servers
- Password protected systems
- Local firewalls and virus protection
- Lehigh University firewall
- LTS intrusion detection
- Yearly audit through Designsafe-ci.org
- Secured system racks
- Secured building and offices

Software Capabilities

- Components for simulation coordination
 - MATLAB, SIMULINK (RT)
 - Lehigh HybridFEM through SIMULINK
 - Java and C++
 - OpenSEES via OpenFresco
 - SIMCOR (UIUC)
 - ANSYS
 - LabVIEW

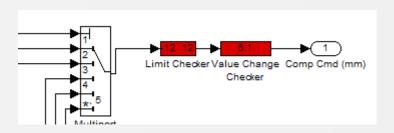


Training: Documentation

- User's Guide
- Repository of technical documents, demos and video tutorials
- Available to all users

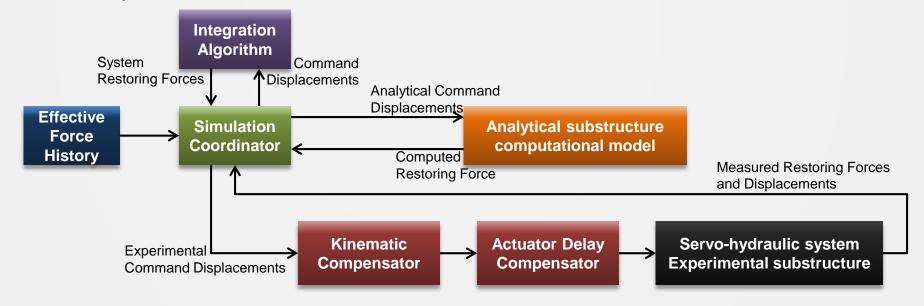
Training: Hands on

- Familiarize users with Lab & IT equipment
- Describe all safety requirements
- Introduce users to software and user tools
- Perform validation studies on physical test bed
- Demonstrate various simulation techniques


Simulation Safety

- Command software limits
 - Bound and rate limits
- Controller software limits
 - System trip and shutdown

E-Stop buttons



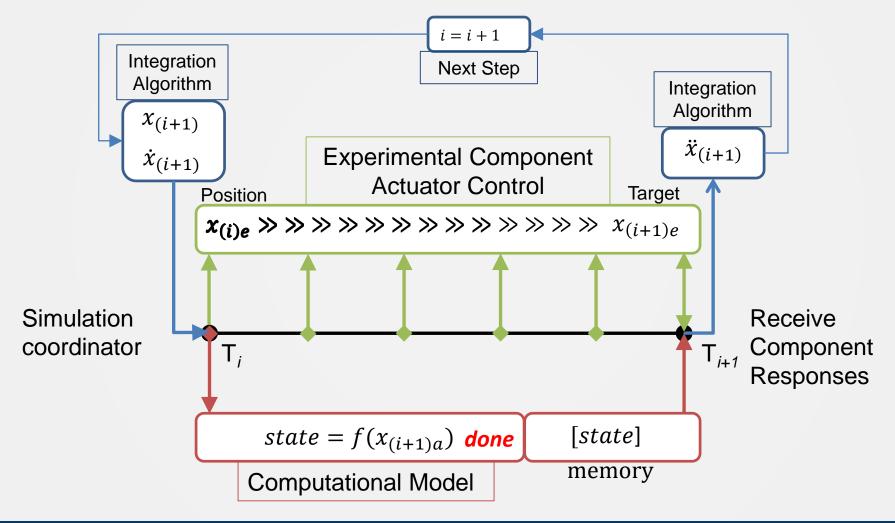
Hybrid Simulation Components

- Simulation coordinator
- Integration algorithm
- Computational model of analytical substructure
- Kinematic error compensator
- Actuator delay compensator
- Experimental substructure

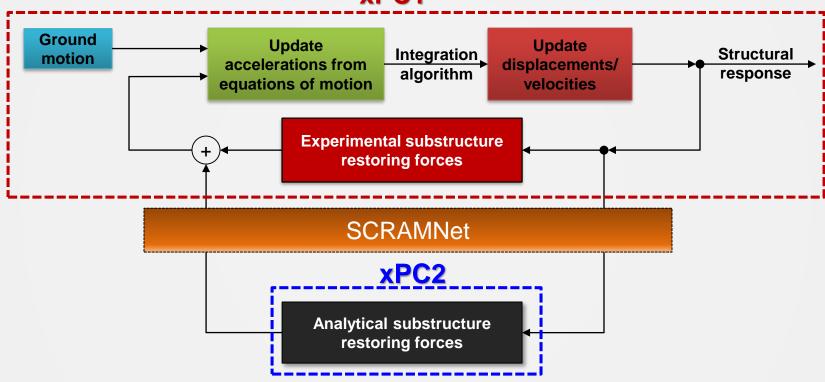
Hybrid Simulation Modules

Module	Developer	Status
Simulation Coordinator	Marullo and Chen ⁽¹⁾	Open Source
CR Integration Algorithm	Chen and Ricles ⁽²⁾	Open Source
Actuator Control: Inverse Compensation	Chen and Ricles ⁽²⁾	Open Source
Actuator Control: Adaptive Inverse Compensation	Chen and Ricles ⁽¹⁾	Open Source
Actuator Control: Adaptive Time Series Compensation	Chae, Ricles, and Kazemibidokhti ⁽¹⁾	Open Source
Actuator Control: Kinematic Error Compensation	Mercan and Ricles ⁽¹⁾	Open Source
Computational Modeling/Sim Coordinator: HybridFEM	Karavasilis, Seo, Kolay, Marullo, and Ricles ⁽²⁾	Available on xPC for all users. Open Source Summer 2013

- (1) developed by NEES@Lehigh
- (2) developed by users

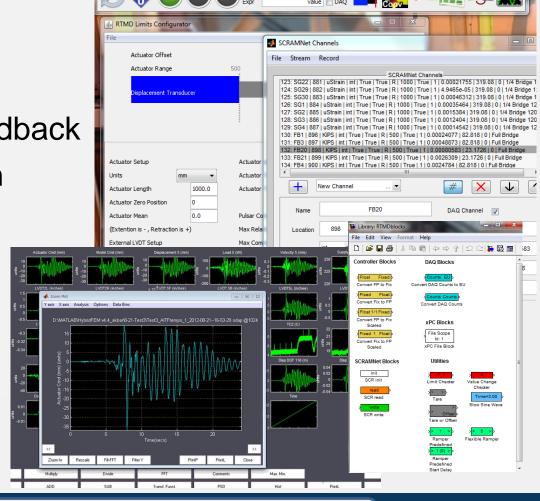


RTHS: Model Flow



RTHS: xPC Grid

xPC1



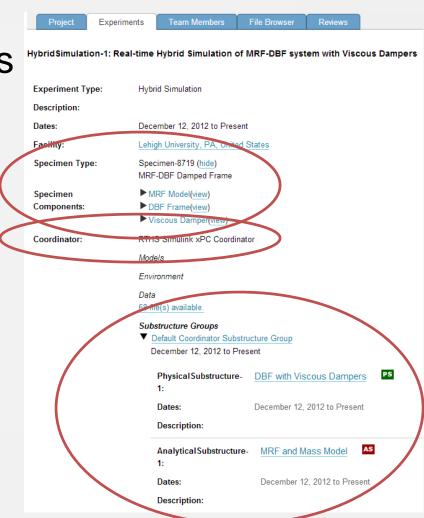
Site Developed Tools

RTMD Simulation and Control Toolbar

- User Tools
 - XML configurations
 - Control and Feedback
 - Data Conversion
 - Telepresence
 - Safety Limits
 - Simulink Libraries
 - Data Analysis

Simulation: Start to Finish

- 1. Research team meeting to define testing protocols, safety measures and train users
- 2. Create project storage and collaboration space
- Design control configuration through numerical and hydraulics off simulations for validation
- 4. Configure data acquisition system for sensors
- 5. Define camera points for video telepresence
- 6. Generate data turbine sources for data telepresence
- 7. Initiate safety protocols for humans and equipment
- 8. Run Experiment!
- 9. Researcher analyzes and processes data
- 10. Collect data into local data repository
- 11. Archive and curate data



Lehigh Data Model

- Improve existing schemas
- Focuses on large-scale structural experiments
- Detailed specimen and component model
- Hybrid simulation metadata
- Currently integrating into NHERI Project Workspace

Thank you!

