Laboratory Exercises: RTHS of a Tall Building Subject to Multi-Natural Hazards

Safwan Al-Subaihawi Graduate Research Assistant Lehigh University

Outline

- Description of prototype 40-story tall building
- Real-time hybrid simulation studies
- Real time hybrid simulation with online model updating (OMU) of nonlinear viscous dampers
- Laboratory demonstration

Outline

- Description of prototype 40-story tall building
- Real-time hybrid simulation studies
- Real time hybrid simulation with online model updating (OMU) of nonlinear viscous dampers
- Laboratory demonstration

Tall Building Study

Prototype Building

Ref.: Moehle et al., Case Studies of the Seismic Performance of Tall Buildings Designed by Alternative Means - Task 12 Report for the Tall Buildings Initiative PEER Rpt 2011/05

Prototype Building Design Criteria

Design criteria without supplemental dampers

Table 2 – Wind Design Criteria

Parameter	Value
Basic Wind Speed, 3 sec. gust (V)	85 mph
Basic Wind Speed, 3 sec gust (V), for serviceability wind demands based on a 10 year mean recurrence interval	67 mph
Exposure	В
Occupancy Category	I
Importance Factor (I _w)	1.0
Topographic Factor (K _{zt})	1.0
Exposure Classification	Enclosed

Table 7 – Seismic Performance Objectives

Level of Earthquake	Earthquake Performance Objectives
Frequent/Service : 43 year return period, 2.5% damping (SLE43)	Serviceability: Drift limited to 0.5%. Demand capacity ratio for buckling restrained braces not to exceed 1.5.
Maximum Considered Earthquake (MCE): As defined by ASCE 7-05, Section 21.2, 2.5% damping.	Collapse Prevention: Extensive structural damage, repairs are required and may not be economically feasible. Drift limited to 3%

3-D view of the building. Image courtesy of Dutta and Hamburger (2010)

Prototype Building Seismicity

Location of Building in Southern California

PSHA deaggregation, 2475-year return period at 5 sec. (Moehle et al. 2011)

⁽after Moehle et al. 2011)

Design Detailing

Building (3C) designed used a single central bay of bracing (BRBs) augmented with outrigger trusses spanning three bays at the 20th, 30th, and 40th stories.

Nonlinear Viscous Dampers

Characterization testing

Outline

- Description of prototype tall building
- Real-time hybrid simulation studies
- Real time hybrid simulation with online model updating (OMU) of nonlinear viscous dampers
- Laboratory demonstration

Real-time Hybrid Simulation Study of Tall Building Subjected to Multi-Natural Hazards

- Natural Hazards
 - Earthquake Loading
 - Wind Loading
- Nonlinear Viscous Dampers at 20th and 30th floors

Building Modal Properties

Mode	T (sec)	f (Hz)	ζ_{eq} (%)
1	6.38	0.16	8.3
2	1.71	0.59	10.0
3	0.84	1.19	
4	0.55	1.81	
5	0.41	2.46	
6	0.32	3.12	
7	0.27	3.77	
8	0.22	4.46	
9	0.19	5.15	
10	0.17	5.88	

 $\zeta_{\rm eq}$: System total damping, half-power bandwidth method

DESI

AT/LSS

RTHS Configuration

Wind load:

- Tokyo Polytechnic University Wind Tunnel Test database
- Normalized pressure coefficient time histories are ٠ converted to full scale forces corresponding to Exposure B and wind speed of 110 mph, 700 year MRI

EQ load:

1989 Loma Prieta EQ – Saratoga Aloha Ave Station ٠ scaled to SLE, DBE, and MCE (43, 475, 2475 year return periods, respectively) hazard level

RTHS Substructures

Response of Building under Wind Loading

- Building subjected to 700 year mean recurrence interval (MRI) wind storm
- Response quantities of interest:
 - > Dampers
 - Floor displacements and accelerations
 - > Members

Wind RTHS: Exposure B, 110 mph Wind Speed

110 mph = 177 km/hr

REAL-TIME MULTI-DIRECTIONAL SIMULATIO

LSS

Illustration of Effects of Member Stiffness in Damper Force Load Path

To develop damper velocity (and therefore make dampers efficient):

- · Members in damper load path must have adequate stiffness
- Equivalent damper stiffness cannot be too large relative to members in load path.

Two springs in series analogy

Member Stiffness in Damper Force Load Path – 700 Year MRI Wind

- Outrigger truss members' and columns' axial stiffness increased using stiffness multiplier in analytical substructure
- A larger member's stiffness results in an increase in the deformations being concentrated in the dampers
- Inefficient to increase stiffness multiplier beyond value of 3.0

Effect of Number of Supplemental Dampers -700 Year MRI Wind

- Increasing the number of dampers beyond a certain number in the outrigger reduces further the velocity in the dampers, making them less effective.
- Not efficient to use more than four 600 kN dampers.

RTHS Results: Floor RMS Lateral Accelerations –700 Year MRI Wind

Floor	RMS Acceleration (mG)		Peak Aco (m	celeration nG)
	No Dampers	With Dampers	No Dampers	With Dampers
20	4.2	2.5	13.9	9.8
30	6.9	3.9	22.1	14.8
40	9.9	5.6	30.1	19.0

6 dampers added to outriggers at 20th and 30th floors:

- RMS Acceleration: 43% to 48% reduction
- Peak Acceleration: 29% to 37% reduction

Response of Building under Earthquake Loading

- Building subjected to different hazard levels
 - Serviceability earthquake 43 year return period (SLE43)
 - Design basis earthquake 475 year return period (DBE)
 - Maximum considered earthquake 2475 year return period (MCE)
- Effects of ground motion record-to-record variability considered
 - Ensemble of ground motions selected and appropriately scaled to hazard level
 - Statistics of Response determined
- Response quantities of interest:
 - Members
 - Story Drift
 - Floor Accelerations
 - Dampers

RTHS: 1989 Loma Prieta EQ Scaled to MCE: 2475 return period EQ

RTHS Results: Damper Force-Displacement, Loma Prieta EQ

- Dampers developed appreciable dynamic response
 - > Dampers performed as nonlinear dampers, where force is capped

Member Stiffness in Damper Force Load Path - Loma Prieta EQ scaled to MCE

- Outrigger truss members' and columns' axial stiffness increased using stiffness multiplier in analytical substructure
- A larger stiffness of members results in an increase in the deformations being concentrated in the dampers
- Inefficient to increase stiffness multiplier beyond value of 3.0

RTHS Results: Maximum Story and Residual Story Drift - Loma Prieta EQ

Number dampers at 20 and 30^{th} floors = 6

RTHS Results: Maximum Normalized BRB Deformation - Loma Prieta EQ

Stiffness multiplier = 3 Number dampers at 20 and 30^{th} floors = 6

EQ Response Statistics - Median

EQ Hazard	Maximum Story Drift (rad)		Maxi Residu Drift	mum al Story (rad)	BRB Ma	aximum D Δ ^{max} /Δ _y	uctility	
	No Dampers	With Dampers	Design Obj	No Dampers	With Dampers	No Dampers	With Dampers	Design Obj
SLE43	0.005	0.004	\leq 0.005	0.000	0.000	0.8	0.7	1.5
DBE	0.012	0.007	-	0.003	0.001	4.7	2.2	-
MCE	0.017	0.011	\leq 0.03	0.006	0.002	5.5	3.4	-

- All configurations meet design objectives
- Dampers improved performance under DBE and MCE by reducing inelastic demand in structure (BRBs)

Stiffness multiplier = 3 Number dampers at 20 and 30^{th} floors = 6

RTHS Summary and Conclusions

- The application of real-time hybrid simulation to large complex systems subject to wind and earthquake natural hazards was illustrated, demonstrating these new advancements.
- Using dampers, building's performance was demonstrated to be improved (accelerations) under wind and (drift, BRB ductility) under EQ loading.
- The methodologies presented herein will enable real-time large-scale simulations of complex systems to be successfully achieved, leading to new knowledge for hazard mitigation solutions and innovative, resilient hazard-resistant structural concepts.

Outline

- Description of prototype tall building
- Real-time hybrid simulation studies
- Real time hybrid simulation with online model updating (OMU) of nonlinear viscous dampers
- Laboratory demonstration

RTHS OMU Background

Dynamic testing using real-time hybrid simulation

- Complex substructures may be difficult to model numerically
- If multiple experimental substructures are needed, all must be present in the lab

Dynamic testing using real-time hybrid simulation with online model updating

- Reduce the number of experimental substructures required for a hybrid simulation by including some of them as computational model components of the analytical substructure
- Update the component computational model of analytical substructure using information obtained from the experimental substructure of a similar component during the hybrid simulation

Real-time Hybrid Simulation

Real-time Hybrid Simulation with Online Model Updating

RTHS OMU Developments at Lehigh University

- Development of explicit, non-iterative damper model for realtime hybrid simulation
- Development of methodology to tune and implement the UKF for real-time identification of nonlinear viscous dampers

RTHS OMU: 40-story building with dampers at 20th, 30th, and 40th floors

RTHS OMU: 40-story building with dampers at 20th, 30th, and 40th floors Response under the MCE Loma Prieta EQ

RTHS OMU: 40-story building with dampers at 20th, 30th, and 40th floors Response under the MCE Loma Prieta EQ

Casa	Stiffness multiplier	Nurr	Number of dampers			Disp reduction
Case		20 th Flr	30 th FIr	40 th Flr	disp (m)	(%)
Base – no dampers	1	0	0	0	0.82	-
Dampers at two floors	3	8	8	0	0.68	17
Dampers at three floors	3	8	8	8	0.60	27

RTHS OMU: 40-story building with dampers at 20th, 30th, and 40th floors Response under the MCE Loma Prieta EQ

- Displacement history of the damper at the 40th story is applied to the physical damper at the 30th story after the hybrid simulation is completed
- Forces predicted based on the OMU compared to the experimentally measured results
- Good agreement achieved

Outline

- Description of prototype tall building
- Real-time hybrid simulation studies
- Real time hybrid simulation with online model updating (OMU) of nonlinear viscous dampers
- Laboratory demonstration

Laboratory Demonstration

Test	Hazard	Model	Dampers at 20th story	Dampers at 30th story	Dampers at the 40th story
1	MCE EQ	40 story building	Physical	None	None
2	MCE EQ	40 story building	Physical	OMU	OMU
3	110 mph wind	40 story building	Physical	None	None
4	110 mph wind	40 story building	Physical	OMU	OMU

DESIG

RTHS Configuration

Parameter	Values
 Ground Motion (scaled to MCE) Near Field Integration Algorithm Integration Time step Numerical damping, ρ_∞ UKF tuning parameters 	 1989 Loma Prieta Earthquake, component SN802_LOMAP_STG000 MKR-α method 7/1024 sec 0 Measurement noise = 8 KN State variables uncertainty =0.001
Parameter	Values
Storm (110 mph wind speed) • Integration Algorithm • Integration Time step • Numerical damping, ρ_{∞} • UKF tuning parameters	MKR- <i>α</i> method 7/1024 sec 0 Measurement noise = 8 KN State variables uncertainty =0.0001

RTMD

REAL-TIME MULTI-DIRECTIONAL SIMULATION

LEHIGH

VERSITY.

ATLSS

DESIG

Acknowledgements

- Research reported in this presentation was performed at the NHERI Lehigh Large-Scale Multi-Directional Hybrid Simulation Experimental Facility
- Supported by the National Science Foundation (NSF) under Awards CMS-0936610 and CMS-1463497
- Financial support for the operation of the NHERI Lehigh Large-Scale Multi-Directional Hybrid Simulation
 Experimental Facility provided by NSF under Cooperative Agreement No. CMMI-1520765.
- Nonlinear viscous dampers provided by Taylor Devices Inc.

Thank you

