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Overview of Real-time Hybrid Simulation

* |In a hybrid simulation, a complete structural system is divided into
experimental (physical) and analytical (numerical) substructures

* In a “real-time” hybrid simulation (RTHS), the target displacements
are determined and imposed on the substructures in “real time”
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Overview of Real-time Hybrid Simulation

« Hybrid simulation is a useful experimental method for
investigating seismic response of a complex structural
system:

— Enables part of the system that is poorly understood or difficult to
model to be constructed and tested in the laboratory (i.e., as the
experimental substructure) at large-scale under simulated seismic
conditions

— Important remaining parts of the system are represented by one or
more numerical model(s) (i.e., analytical substructure(s))

Hybrid simulations of a structural system with rate
dependent components (e.g., dampers) in the
experimental substructure should be “real-time” hybrid
simulations (i.e., RTHS)
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Factors to be considered for successful,
accurate, large-scale RTHS

Possible arrangements of substructures
Design and resulting dynamic characteristics of test setup

Accurate real-time integration of equations of motion and
state determination of analytical substructure

Continuous movement of hydraulic actuators (and resulting
continuous motion of experimental substructure)

Appropriate displacement feedback signals to control
RTHS

Adaptive compensation to reduce differences between
target and measured displacement responses
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Steel MRF Structure with Nonlinear Viscous
Dampers Studied using Large-Scale RTHS

Prototype building (Dong, Sause, Ricles 2015)

— 3-story, 6-bay by 6-bay office building located in Southern California

— Moment resisting frame (MRF), damped brace frame (DBF), gravity
load system, inherent damping of building

r
S A

.

Seismic tributary area South  North

South  Morth
>

|3 @12 5ft |

r_.

13 @12.5ft |

6 @251t B S A e S SR

Plan view of prototype building Section view of prototype building Test structure

Dong, B., Sause, R., and Ricles, J.M. Accurate real-time hybrid earthquake simulations on large-scale MDOF steel structure with nonlinear viscous
dampers. Earthquake Engineering and Structural Dynamics, 2015, 44(12): 2035-2055 (DOI: 10.1002/eqge.2572)
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Design of Steel MRF Structure with
Nonlinear Viscous Dampers

Design of prototype building (MRF,DBF)

— MREF is designed to satisfy strength
requirement of ASCE 7-10 South North
«—>

— MREF is not designed to meet drift
requirement of ASCE7-10, story drifts will
be controlled by dampers in DBF

— DBF is designed to remain elastic under
the design basis earthquake (DBE)

Maximum story drift of 0.85% and 1.5%
was initially estimated for prototype
building with three 600 kN dampers
(C,=696 kN-s/m and a=0.44) under DBE
and MCE, respectively

Dong, B., Sause, R., and Ricles, J.M. Accurate real-time hybrid earthquake simulations on large-scale MDOF steel structure with nonlinear viscous
dampers. Earthquake Engineering and Structural Dynamics, 2015, 44(12): 2035-2055 (DOI: 10.1002/eqge.2572)




Nonlinear Viscous Dampers
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Goals for Large-Scale RTHS on Steel MRF
Structure with Nonlinear Viscous Dampers

Experimentally investigate nonlinear viscous damper response within
frame structure

Generate data for evaluating design procedures and numerical models for
structures with nonlinear viscous dampers
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Large-Scale RTHS on Steel MRF Structure with
Nonlinear Viscous Dampers: Phase-1 Substructures
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Real-time state determination
Analytical substructure has 296 DOFs and 91 elements;

Nonlinear fiber element for beams, columns, and RBSs; Experimental SUbStI’UCtU re

Panel zone element for panel zone of beam-column connection; (O.G-SCale DB F)
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Large-Scale RTHS on Steel MRF Structure with
Nonlinear Viscous Dampers: Phase-2 Substructures
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Real-time state determination

Analytical substructure has 10 DOFs and 3 elements;
Elastic beam-column element for lean-on column;
P-delta effects were included in analytical substructure.
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Large-Scale RTHS on Steel MRF Structure with
Nonlinear Viscous Dampers: Procedure

Schematic of procedure for RTHS
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Large-Scale RTHS on Steel MRF Structure with
Nonlinear Viscous Dampers: Procedure

Integration Algorithm: Integration of equations of motion

Explicit CR integration algorithm (Chen, Ricles, Marullo, Mercan 2009)
Calculate X, att,,=(i+1)-At:
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Chen C, Ricles J.M, Marullo T.M, and Mercan O. Real-time hybrid testing using the unconditionally stable explicit CR integration algorithm.
Earthquake Engineering & Structural Dynamics, 2009, 38(1): 23-44
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Large-Scale RTHS on Steel MRF Structure with
Nonlinear Viscous Dampers: Procedure

Ramp generator: Continuous movement of actuators

Interpolation of displacements to account for difference in time increment
between integration time step (Af) and controller time interval (5t).

)v(r:,kzé(xrt\,iﬂ_xrt],i)_'_xr:,i (J=12,...ns)

ns —number of substeps, ns=4;
J —substep index of the ramp generator, ranges from 1 to ns;

X, .., and x; ; —target displacements for DOF n at t,,,and t;;
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e
ri +1 l : ! oy —a
~ 3,i+ Ramp 3. Adaptive 3.k [ Servo-controller (PID) 3.k
€ generator Compensator and hydraulic actuator

r.l

d . t t € —a
Effective i Integration 2, Ramp 2k Adaptive 2.k Servo-controller (PID) Xk
force algorithin generator Compensator and hydraulic actuator

t =t ¥ -

X, . a

Al Ramp K I Adaptive 14 [Servo-controller (PID) | *1.k
\ gcenerator] Compensator and hydraulic actuator

r. l —e
i+l Analytical substructure Experimental substructure Ty
(FEM model) (Test specimen)

k=ns(i-1)+j Decimatiou|~
j=1.2.....ns
ns=munber of

substeps with step /

Response of “Response of
analytical substructure experimental substructure

RTMUE @ DESIGNSAFE-C|
el Comin NN

k.
RLLLTTRL BULTHHEIC TIONAL SEULATRON




Large-Scale RTHS on Steel MRF Structure with
Nonlinear Viscous Dampers: Procedure

Compensator: Reduce potential errors between target displacement and
actual displacment due to dynamic characteristics of servo-hydraulic
controller, actuators, test fixture and experimental substructure

Adaptive ATS compensator (Chae, Kazemibidokhti, Ricles 2013)
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Chae Y, Kazemibidokhti K, and Ricles J.M. Adaptive time series compensator for delay compensation of servo-hydraulic
actuator systems for real-time hybrid simulation. Earthquake Engineering and Structural Dynamics, 2013, 42(11): 1697-1715




Large-Scale RTHS on Steel MRF Structure with
Nonlinear Viscous Dampers: Procedure

Use measured displacements from experimental substructure
as feedback for RTHS control (Dong, Sause, Ricles 2015)

Enables target displacements to be imposed accurately on experimental

substructure
Accuracy is determined by displacement history of experimental

substructure, not by actuator stroke
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Dong, B., Sause, R., and Ricles, J.M. Accurate real-time hybrid earthquake simulations on large-scale MDOF steel structure with nonlinear viscous
dampers. Earthquake Engineering and Structural Dynamics, 2015, 44(12): 2035-2055 (DOI: 10.1002/eqge.2572)




Large-Scale RTHS on Steel MRF Structure with

Nonlinear Viscous Dampers
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RTHS Phase-1: MCE level 1994 Northridge (RRS318)

MCE ground motion: 2% probability of exceedance in 50 years.




RTHS Phase-1 Results Evaluation
Floor Displacements in MCE level 1994 Northridge (RRS318)

Peak floor displacement:
31.1,63.7, 85.5 mm
Maximum amplitude error:
1.1,1.6, 2.0 mm

(3.5%, 2.5%, 2.3%)
Delay:

about 2.0 ms

Floor displacement (mm)

3
Time (s)

Dong, B., Sause, R., and Ricles, J.M. Accurate real-time hybrid earthquake simulations on large-scale MDOF steel structure with
nonlinear viscous dampers. Earthquake Engineering and Structural Dynamics, 2015, 44(12): 2035-2055 (DOI: 10.1002/eqe.2572).




RTHS Phase-1 Results Evaluation
Error between x™ and xtin MCE level 1994 Northridge (RRS318)

Dong, B., Sause, R., and Ricles, J.M. Accurate real-time hybrid earthquake simulations on large-scale MDOF steel structure with nonlinear viscous
dampers. Earthquake Engineering and Structural Dynamics, 2015, 44(12): 2035-2055 (DOI: 10.1002/eqge.2572).
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RTHS Phase-1 Results Evaluation

Comparison of x¢, x2, x™ and xtin MCE level 1994 Northridge (RRS318)

Dong, B., Sause, R., and Ricles, J.M. Accurate real-time hybrid earthquake simulations on large-scale MDOF steel structure with
nonlinear viscous dampers. Earthquake Engineering and Structural Dynamics, 2015, 44(12): 2035-2055 (DOI: 10.1002/eqe.2572).




RTHS Phase-1 Results Evaluation
Floor Velocities in MCE level 1994 Northridge (RRS318)

Floor velocity (m/s)
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Peak velocity: 0.198, 0.422, 0.531 m/s
Maximum difference: 0.005, 0.007, 0.009m/s (2.5%, 1.7%, 1.7%)

Dong, B., Sause, R., and Ricles, J.M. Accurate real-time hybrid earthquake simulations on large-scale MDOF steel structure with nonlinear viscous
dampers. Earthquake Engineering and Structural Dynamics, 2015, 44(12): 2035-2055 (DOI: 10.1002/eqge.2572).

LEHIGI'_! = "L""t“'“t‘“. @ ?@Eﬁiﬁﬂ?sé;‘;%]




RTHS Phase-2: MCE level 1994 Northridge (RRS318)

MCE ground motion: 2% probability of exceedance in 50 years.
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RTHS Phase-2 Results Evaluation
Floor Displacements in MCE level 1994 Northridge (RRS318)

Peak floor displacement:
33.3,65.4,83.7 mm
Maximum amplitude error:
1.2,0.9,1.9 mm

(3.6%, 1.4%, 2.3%)

Delay:

about 2.0 ms

Dong, B., Sause, R., and Ricles, J.M. Accurate real-time hybrid earthquake simulations on large-scale MDOF steel structure with nonlinear viscous
dampers. Earthquake Engineering and Structural Dynamics, 2015, 44(12): 2035-2055 (DOI: 10.1002/eqe.2572).
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Comparison of RTHS Phase-1 and Phase-2 Results

Comparison of floor displacements in Phase-1 and
Phase-2 MCE level 1994 Northridge (RRS318)

Peak displacement (Phase-1):
31.1, 63.7, 85.5 mm
Maximum difference:
2.1,1.7,1.8 mm

(6.8%, 2.7%, 2.1%)

Dong, B., Sause, R., and Ricles, J.M. Accurate real-time hybrid earthquake simulations on large-scale MDOF steel structure with nonlinear viscous
dampers. Earthquake Engineering and Structural Dynamics, 2015, 44(12): 2035-2055 (DOI: 10.1002/eqge.2572).
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Use of RTHS in Earthquake Engineering Research

Parametric study of Prototype Buildings with reduced-strength
steel MRF designs in Phase-1 RTHS (Dong, Sause, Ricles 2016)

— D100V: with MRF designed for 100% of base shear design demand
— D75V: with MRF designed for 75% of base shear design demand

— D60V: with MRF designed for 60% of base shear design demand
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Dong, B., Sause, R., and Ricles, J.M., Seismic Response and Performance of Steel MRF Building with Nonlinear Viscous Dampers under DBE and
MCE, Journal of Structural Engineering, 2016, 142(6): 04016023-1 — 04016023-16 (DOI: 10.1061/(ASCE)ST.1943-541X.0001482)
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Use of RTHS in Earthquake Engineering Research

Phase-1 experimental substructure (DBF with dampers) is undamaged
by DBE and MCE input

Damage is confined to MRF within analytical substructure in Phase-1

Therefore, an ensemble of ground motion records can be used as
input for Phase-1 RTHS (account for record-to-record variability
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Dong, B., Sause, R., and Ricles, J.M., Seismic Response and Performance of Steel MRF Building with Nonlinear Viscous Dampers under DBE and
MCE, Journal of Structural Engineering, 2016, 142(6): 04016023-1 — 04016023-16 (DOI: 10.1061/(ASCE)ST.1943-541X.0001482) 28




Use of RTHS in Earthquake Engineering Research:
Statistical Evaluation of Response from RTHS

. Story drift _
L) LA 1st story 2nd story 3rd story 1ststory 2nd story 3rd story DBE level RTHS

DBE-1 0.68 0.82 0.53 0.009 0.013 0.022 N : ; -
DBE-2 0.63 0.73 0.52 0.000 0.000 0.000 Mean maximum Story drlftS.

DBE-3 068 076 048 0013 0017  0.009 0.71%, 0.78%, and 0.54% for

DBE-4 079 08 055 0031 0035 0022 st And rd
DBE-5 062 071 049 0004 0004  0.009 the 1%, 29, and 3™ story

DBE-6 0.79 0.80 0.55 0.044 0.044 0.022 Negllglble reSIdual Story drlft
DBE-7 0.71 0.80 0.57 0.013 0.013 0.000
DBE Mean 0.71 0.78 0.54 0.016 0.018
DBE prediction 0.76 0.81 0.64 -

MCE level RTHS:

Story drift * Mean maximum story drifts:

Ground Motion No. gy story 2nd story 3rd story 1ststory 2nd story 3rd story 1.18%, 1.37%, and 0.99% for
MCE-1 1.25 1.48 1.09 0.118 0.176 0.137 st nd rd
MCE-2 110 129 088 0042 0061 0035 the 1%, 27, and 3" story

MCE-3 118 134 103 0042 008  0.076 : T
MCE-4 1.09 135 102  0.087 0159  0.131 Mean residual story drift :

MCE-5 127 139 098 0091 0124  0.060 0.08%, 0.12%, and 0.09% for

MCE-6 107 124 091 0112 0150 0.104 st ond o
MCE-7 132 144 100 0080  0.105 the 1%, 2%, and 3 story

MCE Mean 1.18 1.37 0.99 . ey s
MCE prediction —= T T Predicted drift is close to mean

from RTHS D100V structure
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Use of RTHS in Earthquake Engineering Research:
Statistical Evaluation of Response from RTHS
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Use of RTHS in Earthquake Engineering Research:
Steel MRF Structure with Viscous Dampers: Results

Damper force-
damper
deformation and
damper force-story
drift

Damper force
and DBF column
shear versus
story drift

DBF flexibility produces differences between damper deformation and story drift

Damper forces are more in-phase with DBF column shear forces D100V structure
_ MCE RRS318
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Use of RTHS in Earthquake Engineering Research:
Steel MRF Structure with Viscous Dampers: Results

MRF story shear
and damper force
versus story drift

MRF and DBF
story shear
versus story
drift

Damper forces are partly in-phase with MRF story shear (at peak MRF story shear,

damper force is large) D100V struct
! Structure
DBF forces large at time of peak MRF forces MCE RRS318
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Summary

* Factors for accurate large-scale RTHS:
— Arrangements of substructures

Design and resulting dynamic characteristics of test setup
Accurate real-time integration of equations of motion and state
determination of analytical substructure
Continuous movement of hydraulic actuators
Appropriate displacement feedback signals to control RTHS
Adaptive compensation to reduce differences between target and
measured displacement responses

« Accurate RTHS results were achieved (experimental
substructure displacements close to target displacements)

« Use of RTHS in Earthquake Engineering Research:
— Potential for parametric investigation of large-scale structural systems
by varying analytical substructure properties
— Potential for statistical investigation of structural system response

— Broad structural response data set under simulated earthquake loading
33
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