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Resilience

«The term “resilience” means the ability to prepare for and adapt
to changing conditions and withstand and recover rapidly from
disruptions. Resilience includes the ability to withstand and
recover from deliberate attacks, accidents, or naturally occurring
threats or incidents.»

[Presidential Policy Directive 21 — Critical Infrastructure Security and Resilience (2013)]
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Resilience is about functionality
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Transportation network resilience .

Regional hazard modeling

40

= | Hazard maps (e.g., seismic from USGS)

~7 /| provide information on one site.

-~ | For regional analyses, we need to have
correlated sets of data.

Set Location Hazard Curves UHHS AFE vs. Site Class Data Access Help & Inlo

Latdude 2968805 Longdude 9518555

Source: USGS - avsuna moson 1) .
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Correlated hazard

Assess the correlation Smart scenarios selection

Very appealing, because it gives  Select a suite of scenario events that, in an
high control. ensemble sense, matches the probability of

exceedance at a grid of locations.
Usually requires strong

. S = Matching of the marginal distribution is
assumptions or simplifications.

imposed
* Correlation is provided (hopefully) by
the fact that scenarios are real or

realistic.
Covariance Approximate
matrix analytical models
estimation
Auto;i)srelatlon Hazard-consistent Optimization-based
1tms sampling approaches

K-means
clustering

Intensity maps as random fields

Observation:
The IM is a 2D random field, non-Gaussian and non-homogeneous.

y)

iz,

> Can we simulate few truly representative samples?

» How can we match the correlation?

> Can we even assess the correlation... ?

> Is there a framework that can do all this in an automated way?
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Functional Quantization

IM Maps
Gaussian non-Gaussian
. . . . random
Optimal representation of: stationary non-stationary A
— - — d functions
uni-dimensional multi-dimensional

with a small-to-moderate number of samples

tavailable

N =

tsingle run

Hazard Quantization (HQ)

[Christou, Bocchini & Miranda (2016). Optimal representation of multi-dimensional random fields with
a moderate number of samples: application to stochastic mechanics. Probabilistic Engineering Mechanics.]

Numerical application

Probabilistic characteristics

A N * Location of epicenter:
A Fault AB: 50%  Fault CD: 50%
Position along fault uniformly
Q1020 distributed
* Magnitude
C
=
= /\
&
B 55 6.0 6.5 magnitude
D
* Depth of hypocenter
Known faults
B Center of rupture

=
Q/\
~

20 40 6.0 depth [km]

Attenuation relation & rupture
Abrahamson and Silva (1997)
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Numerical application
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Numerical application: hazard consistency

Probability of exceedance P[S,(T = 0.1s) > 0.4g]

08
08 06 J
04 04
0.2 02
[ 0.l
40 40 ~
30

Approximamation
(quantizer with
N =500)

o ok
2 20
Xa [km] x, [km]

Reference solution
(500,000 samples)

12/16/2016



Numerical application: hazard consistency
Probability of exceedance P[S,(T = 0.1s) > 0.4g]

Thick‘colored lines: l
REFERENCE (500,000)

Thin black lines:
QUANTIZER N = 5007
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Numerical application: hazard consistency
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Numerical application: hazard consistency
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Numerical application: hazard consistency
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Probability of exceedance P[S,(T = 0.1s) > 0.4g]

Numerical application: hazard consistency
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Probability of exceedance P[S,(T = 0.1s) > 0.5g]
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Numerical application: hazard consistency

Og &

%, [km]

0 5 10 15 20 25 30
X, [km]

Probability of exceedance P[S,(T = 0.1s) > 0.6g]

Numerical application: hazard consistency
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Numerical application: hazard consistency

0 5 10 15 20 25 30 35
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Numerical application: hazard consistency
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Numerical application: hazard consistency

&, [km]

Probability of exceedance P[S,(T = 0.1s) > 0.3g]

Numerical application: correlation
The field is non stationary, so the autocorrelation is a 4D function.
To plot it, we actually computed it only on “strips” of the field.

Autocorrrelation function of Autocorrrelation function of
S5,(T = 0.1s) S,(T = 0.1s)

so\}\“\\\
* 1;)}‘\//3
g (U g, g (U g,
Approximamation Reference (500,000)
(quantizer with
N =500) Similar results for other

periods and for other strips
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Numerical application: correlation

The field is non-stationary, so the autocorrelation is a 4D function.

To plot it, we actually computed it only on “strips” of the field.

Autocorrrelation function of
S,(T = 0.15s)

025

(U

5 g
Approx1m ama.tlon Difference: Approximation - Reference
(quantizer with
N =1500) Similar results for other

periods and for other strips

Numerical application: South Carolina

USGS Central and Eastern
United States Seismic Source
i Characterization project
(CEUS-SSCn)

No clearly defined fault

0 Local (purple region)

0 Narrow (red region)

0 Regional (blue region)
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Numerical application: South Carolina

200 sample events

All events are modeled to
occur on vertical strike-slip
faults

Magnitudes: model as a
uniform distribution of +0.25
M bins centered on the
corresponding magnitude
values

E(M) weight

6.7 0.10
6.9 0.25
7.1 0.30
7.3 0.25
7.5 0.10

Numerical application: South Carolina

200 sample events

Local (purple region)
weight: 0.50

Orientation: parallel to the
long axis (strict boundaries)

Narrow (red region)
weight: 0.30

Orientation: parallel to the
long axis (w/o strict
boundaries)

Regional (blue region)
weight: 0.20
Orientation:

parallel to the long axis;
weight 0.80 (strict
boundaries)

Vertical to the long axis;
weight 0.20 (strict
boundaries)
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Numerical application: South Carolina

One quantum
Quantizer size N = 50

Numerical application: South Carolina

Autocorrelation, with
respect to the central point

Exact Quantizer
Sample size N = 500,000 Quantizer size N = 150

L L
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Numerical application: South Carolina

New_AL_ncep_reanal track number 11452
September 2008

Hurricanes

Synthetics or taken from the
HURDAT database

Numerical application: South Carolina

sample 4 belongs to tassel 13
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Numerical application: South Carolina
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Multi-scale resilience assessment

Bridge Structural Components

Component fragility

Bearing —~ 0. g '.
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Component fragility
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Probabilistic restoration functions
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[Karamlou & Bocchini (2016). From component damage to system-level probabilistic restoration
functions for a damaged bridge. Journal of Infrastructure Systems, ASCE]

Functionality-Fragility Surface

FFSp(t,im) = P[Q (t) > Cpislim]

Probability

Probabilistic
restoration curves *

\
s Mnteng;j
N 1ty m
. ] Casure

Fragilit
< ————> Evolution of FFSg;; by time raglitty curves

Go—o0a —> Evolution of FF S5 by event intensity

[Karamlou & Bocchini (2016). Functionality-fragility surfaces: a tool for probabilistic resilience analysis
of bridges. In Book of Abstracts of EMI 2016 / PMC 2016, ASCE]
[Karamlou & Bocchini (2016). Introducing Functionality-Fragility Surfaces. Under review]
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Functionality-Fragility Surface

FFS Using the Available Data (HAZUS):

1

R e ey — ) ]
0a - FFSpi5(t, im) = f G[fmﬂs(t)|dm] - dG[dm|im]
- B
Q%z 0 Yav // dam
Al # Ly B
8 04 ffy =) PlA® = Cpusldisi] - P[D = Casslim]
02|11/ vdls;
77
o Lz
0 0.4 0.8 1.2 1.6 2
Spectral acceleration (g)
— 1
1 =
00 7 i 7 g 08
80 |~ 5 // by
Al 0.6
o 60 S 04
& A S
) =02
o> 40 [ = .
20 0
o bod_ bbbl =T 1l
0 0 100

t (days)

P[Q (t) = 50%]|im]

12/16/2016

22



Functionality-Fragility Surface

Port of San Diego Highway Network:

¢ One of the largest ports in California

e 6% port in the US in terms of value of the shipped cargo :
e 10% port in the US in terms of the volume of the shipped cargo
¢ An strategic port used for transit of military equipment

¢ Total number of 238 bridges

Google Earth HAZUS-Arc GIS

[Karamlou, Bocchini (2016). Sequencing algorithm with multiple-input genetic operators: application to
disaster resilience. Engineering Structures]

Functionality-Fragility Surface

Network modeling and input optimization parameters:

e Subjected to a seismic scenario (used HAZUS-MH)
e 80 damaged bridges

e NSApax =5, ty, = 3 years

¢ Maximize the long-term and medium-term resilience

¢ Complete traffic analysis for network performance

Google Earth HAZUS-Arc GIS

[Karamlou, Bocchini (2016). Sequencing algorithm with multiple-input genetic operators: application to
disaster resilience. Engineering Structures]
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Optimal post-disaster restoration

Trial solutions evaluated by AMIGO Pareto optimal solutions

Solurion 51
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Optimal post-disaster restoration
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