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FACILITY OVERVIEW

To help meet the grand challenge of community resilience to TR AN N /
natural hazards, the NHERI Lehigh Experimental Facility (EF) is v = Lh ‘m"
a world-class, open-access facility which enables researchers to ‘ Q\Q L% o ":‘ !,“ l I :
address key research questions associated with the challenge ‘ ‘\' o R
of community resilience. The Lehigh EF has a unique portfolio 8 N Wi |
of equipment, instrumentation, infrastructure, testbeds, ‘
experimental simulation control protocols, large-scale
simulation and testing experience in addition to know-how that
does not exist elsewhere in the US. The unique strength of the
Lehigh EF is accurate, large-scale, multi-degree-of-freedom and
multi-directional simulations of the effects of natural hazard
events on civil infrastructure systems (i.e., buildings, bridges,
industrial facilities, etc.) with soil-foundation effects. The p— '
facility is managed and operated by a knowledgeable and highly Figure 1. Lehigh EF large-scale
skilled staff, enabling high quality experimental data to be testing.

obtained from tests performed at the Lehigh EF.
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The capabilities and resources of the NHERI Lehigh EF align themselves with the NHERI Science Plan by
“enabling the assessment of the physical vulnerability of the civil infrastructure and social vulnerability of
populations exposed to natural hazards, and the creation of technologies and tools to create a sustainable
infrastructure for the nation” (“Five-Year Science Plan”). The NHERI Lehigh Experimental Facility (EF)
provides added value to the natural hazards engineering research community and stakeholders by
enabling the experimental investigation of the 3D effects of multi-natural hazards on the civil
infrastructure to be readily performed. Performance-based engineering approaches can be developed
and validated that enhance the resiliency of the civil infrastructure against the effects of natural hazards.
The approach of using real-time multi-directional hybrid simulations (described below) enables synergistic
investigations of the effects of various types of natural hazards on systems, where realistic demand
associated with prescribed hazard levels are involved. This is in contrast to the traditional approach of
investigating individual isolated components of a system under predefined quasi-static loading. The
shortcoming of the traditional approach lies in the fact that it neglects the effects of the interaction of a
component with the system and the environment under realistic loading and boundaries.




The types of laboratory simulations and tests enabled by the .

Lehigh EF include: (1) hybrid simulation (HS) which combines S = Tha al N e
large-scale physical models with computer-based numerical
simulation models; (2) geographically distributed hybrid
simulation (DHS) which is a HS with physical models and/or i
numerical simulation models == =~ JW
located at different sites; (3) Ly -
real-time hybrid natural L
hazards simulation (RTHS), . = 4 o
including earthquake, ' y .
wind, and storm surge
which is a HS conducted at
the actual time scale of the
physical models; (4) : 4
geographically distributed v _ &
real-time hybrid simulation 5 ' - b AR
which combines DHS and
RTHS; (5) shake table
testing, which can be  Figure 2. Real-time Cyber-Physical Structural Systems Testing Laboratory:
used either in a (a) Testbeds; and, (b) multi-directional shake table.
conventional  manner

(ST) or configured to be used in a real-time hybrid simulation manner (RTHS-ST); (6) dynamic testing (DT)
which loads large-scale physical models at real-time scales through predefined load histories; and (7)
quasi-static testing (QS) which loads large-scale physical models at slow rates through predefined load
histories.
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The resources available at the Lehigh EF enable multiple large-scale simulations and tests to be conducted
simultaneously, permitting numerous users to work concurrently without significant interruption.

The NHERI Lehigh Experimental Facility (EF) is located
within the ATLSS Center, and consists of 2736 m? (29,450
ft?) of floor space that features a 3-D multi-directional
reaction wall and strong floor high-bay laboratory (see
Figure 3). This and other resources available to
researchers at the Lehigh EF are shown laid out in the floor
plan in Figure 4, and described later. In addition to its
world-renowned large-scale testing capabilities, the
NHERI Lehigh EF now features the 372 m? (4000 ft?>) NHERI
Lehigh Real-time Cyber-Physical Structural Systems
Testing Laboratory (RCPSS). The laboratory features five
test beds with dedicated dynamic actuators along with a
multi-directional shake table. A real-time integrated control
system connects the test beds and shake table, enabling users of the RCPSS to conduct concurrent testing
that is synchronized in real-time by simultaneously engaging the various test beds and the shake table.
The real-time integrated control system includes tools for creating nonlinear models (both with material
and geometric nonlinearities) that can be used for numerical simulation or real-time hybrid simulation.
Users of the RCPSS and the NHERI Lehigh Experimental Facility can readily perform 3-D real-time hybrid
simulations consisting of multiple experimental substructures and nonlinear analytical substructures.

Figure 3. ATLSS Center Multi-directional
Reaction Wall and Strong Floor



Staging areas for preparation and demolition of specimens exist at the front and rear of the Lehigh EF.
These areas are serviced by the 180 kN and 90 kN overhead cranes, respectively, with access to outside
loading docks via 7m tall overhead high-bay doors. In addition to these cranes, additional auxiliary
equipment is available for handling specimen construction, handing, transport include forklifts, manlift,
and the machine shop. There are indoor and outdoor storage areas for equipment and specimens.
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Figure 4. Lehigh Experimental Facility Floor Plan.



EQUIPMENT

A description of the NHERI Lehigh EF equipment and specifications are summarized in Table 1. The Lehigh
EF equipment (see Table 1) includes: (1,2) five dynamic large capacity servo-hydraulic actuators; (3,4,5)
five dynamic reduced-capacity servo-hydraulic actuators; (6) large capacity central hydraulic power supply
system; (7,8,9,10) real-time integrated IT control system with three digital servo-hydraulic control
systems, which integrates laboratory data acquisition, computational simulation, telepresence, local data
repository, and servo-hydraulic actuator control in a single IT system; and (11,12) portfolio of sensors and
local data repository. The five dynamic large-capacity actuators include two actuators with 2300 kN
maximum force capacity, 838 mm/sec maximum velocity, with a 1000 mm stroke. The remaining three
dynamic actuators possess 1700 kN maximum force capacity, 1140 mm/sec maximum velocity, and a 1000
mm stroke. The hydraulic power supply system features five 5-454 Ipm pumps and a 3030 liter
accumulation system that enables earthquake effects on structures to be sustained for more than 30
seconds during a large-scale multi-directional real-time hybrid simulation. It also enables the investigation
of the multi-directional response of structural systems to natural wind hazards using real-time hybrid
simulation.

Additional resources through the ATLSS Center are available for research. The specifications for these
resources are given in Table 2.
Table 1 Lehigh EF Equipment

Maintenance and
Resource Features X .
Calibration

1. Two large-capacity servo- e maximum force = 2300 kN External — MTS Corp
hydraulic RTMD actuators e maximum velocity = 838 mm/sec maintenance
ported with 3 high-flow 2080 e 1000 mm stroke range contract
Ipm servo-valves

2. Three large-capacity servo- e maximum force = 1700 kN External — MTS Corp
hydraulic RTMD actuators e maximum velocity = 1140 mm/sec maintenance
ported with 3 high-flow 2080 e 1000 mm stroke range contract
Ipm servo-valves

3. Two 49 kN servo-hydraulic e maximum force = 49 kN External — MTS Corp
actuators with 2 high-flow 57 e maximum velocity = 736 mm/sec maintenance
Ipm servo-valves, housed in e 508 mm stroke range contract

Real-time Cyber-Physical
Structural Systems Laboratory

. One 80 kN servo-hydraulic
actuators with 1 high-flow 342
Ipm servo-valve, housed in Real-
time Cyber-Physical Structural
Systems Laboratory

maximum force = 80 kN ;
maximum velocity = 1295 mm/se}
356 mm stroke range

External — MTS Corp
maintenance
contract

. Two 98 kN servo-hydraulic
actuators with 2 high-flow 57
Ipm servo-valves, housed in
Real-time Cyber-Physical
Structural Systems Laboratory

maximum force = 98 kN
maximum velocity = 381 mm/sec
152 mm stroke range

External — MTS Corp
maintenance
contract

. Two 247 kN servo-hydraulic
actuators with 2 high-flow 342
Ipm servo-valve, housed in Real-
time Cyber-Physical Structural
Systems Laboratory

maximum force = 247 kN
maximum velocity = 736 mm/sec
305 mm stroke range

External — MTS Corp
maintenance
contract

. RTMD hydraulic actuator power
supply with central distribution
system

Five-454 |/min pumps
3030 liter accumulator system with 20800 I/min

External — MTS Corp
maintenance
contract

. RTMD Real-time integrated
control system, housed in
control room

Two SpeedGoat Performance real-time systems
Mathworks workstation; Data display
workstation

Internal — EF IT
Systems Manager




e SCRAMNet GT with communication latency

less than 180 nsec.

9. Three RTMD real-time servo-

hydraulic digital controllers, one

housed in control room, other
housed in Real-time Cyber-
Physical Structural Systems
Laboratory, one housed on
laboratory floor

e 2048 Hz speed
e independent multi-channel

force or displacement
control

L
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External — MTS Corp
maintenance
contract

10. RTMD High speed data

e 4096 Hz speed

External — Pacific

acquisition o 304 channels consisting of voltage, strain and Instruments
temperature maintenance
contract
11. RTMD Real-time telepresence o 28 high definition cameras, real-time data Internal — EF IT

system

streaming, video and imaging capabilities

=

Systems Manager

12. RTMD Sensors

e 12 temposonic displacement sensors of +/-750mm and +/-

1120mm stroke, 5 triaxial and 5 monoaxial +/- 10g
accelerometers, and 8 bi-axis dynamic 360 degree grand
inclinometers

13. RTMD Local data Repository

e Synology 8 bay dual disk redundancy

Internal — ATLSS
Center staff

32 TB, scalable

Internal — EF IT
Systems Manager

Table 2 ATLSS Center Equipment

Resource

Features

1. 3-D multi-directional
reaction wall and strong
floor, high-bay

Multi-directional wall with maximum height to 15.2 m
strong floor12.2 m by 30.5 min plan

1.5 m space anchor point with tie-down capacity of 2224 kN and 1334 kN

in shear and tension.

Overhead high-bay doors with access to loading docks, 7 m in height

2.30 hydraulic actuators

130 kN to 2680 kN in size
125 to 750 mm stroke range
1800 kN follow core jacks

3.4 digital servo-hydraulic
controllers

1024 Hz speed, independent channel force or displacement control

4.3 data acquisition systems

4096 Hz speed, combined over 704 channels; 200 total channels of signal

conditioning

5.Sensors

Large array of displacement transducers (+/-6.4mm (LVDTs) to

1524mm stroke.

Accelerometers +/-1g to +/-10g
Inclinometers ranging up to +/-20 degrees
Actuator load cells

6.3 Digital Imaging Correlation
Systems

Non-contact 3-D full-field strain measurements under dynamic loading 5

Measuring volume range of 10 x 7.5 mm to 2000 x 1500 mm
Strain measure range from 0.01% to 100%
Sampling rates of 250,000 frames/sec.

7. Auxiliary equipment

180kN and 90 kN cranes; forklifts; manlift; machine shop




TESTBEDS

Lehigh EF users will have readily access to several large-scale testbeds that exist at the ATLSS Center for
conducting their research. A list of these testbeds are given in Table 3. The testbeds enable a wide range
of large-scale experimental research, including real-time hybrid simulation, non-structural component
research, damper and isolation bearing research, tsunami debris impact force research, and soil-structure
interaction research. The testbeds also used for conducting demonstrations and training during
researcher and training workshops, in addition to ECO activities.

Table 3 Testbeds at ATLSS Center

Test bed

Features

[

. Lateral force resisting system testbed

Test large-scale systems of up to 13.7 m in
height, 11 m in width

2. Non-structural component multi-directional
seismic simulator

12.2 minlengthand 3.1 m
in width
Multi-directional loading

3. 5 full scale damper testbeds

Maximum force of 2300 kN, 1143 mm/sec
velocity, and 1000 mm stroke range

Damper characterization; real-time
hybrid sim

4. Tsunami debris impact force testbed

High speed DAQ; high
cameras

5. Two large-scale soil boxes for soil-structure
interaction research

Flexible designs (1.8 x 1.8 x 1.8 m and 1.8 x
1.8 x0.9 min size)

Actuators with load cells; Data acquisition
system

Sensors for soil and foundation response
measurements

6. Six reduced scale damper testbeds with
dedicated nonlinear viscous dampers, rotary
friction damper

stroke range

7. NHERI Lehigh Real-time Cyber-Physical
Structural Systems Testing Laboratory:
Testbeds

Five Testbeds:
Maximum force of 247 kN,

1295 mm/sec velocity, and 736 mm
stroke range
Five Dampers: Four Nonlinear Viscous

Dampers; One Rotary Friction damper




8. NHERI Lehigh Real-time Cyber-Physical e Real-time hybrid simulation with shake table capabilities
Structural Systems Testing Laboratory: o 3 degrees of freedom: Bidirectional in-plane ; N
Real-time Hybrid Simulation Shake table translations and rotation normal to platen

e 1.83 m. by 1.83 m. platen

e 45kN payloadat1g.

e + 254 mm stroke NS, + 177-mm stroke EW

e Maximum velocity of 737 mm/sec.

REAL-TIME INTEGRATED CONTROL SYSTEM AND EXPERIMENTAL PROTOCOLS

The Lehigh EF real-time testing architecture features a Real-Time Integrated Control System for both
real-time and slow rates of multi-directional testing. A schematic of the real-time testing architecture at
the NHERI Lehigh Experimental Facility is shown below in Figure 5.
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Figure 5. Lehigh EF Real-time Integrated Control System

A data structure for SCRAMNet exist that includes multiple states for commands and feedback signals,
enabling advance servo-hydraulic control laws to be implemented and sophisticated testing methods to
be performed. Actuator control for real-time testing is achieved using adaptive actuator delay
compensation based on the ATS method (Chae et al. 2013a). For real-time hybrid simulation, numerous
options exist for modeling the analytical substructure. The programs HybridFEM-MH and HyCoM-3D has
been developed by Kolay et al. (2018) and Ricles et al. (2020) that enables 2D and 3D analytical
substructures to be created using embedded MATLAB functions in a Simulink model. Source code can be
compiled and run in real-time to conduct either 2D or 3D multi-hazard real-time hybrid simulations.
HybridFEM-MH and HyCoM-3D both have an element library that includes nonlinear force-based and
displacement-based fiber elements, nonlinear panel zone elements, nonlinear hysteretic connection
elements, nonlinear geometric elements based on the co-rotational formulation (to model both P-A and
P-3 effects), along with a material library that enables the hysteretic stress-strain behavior of structural
steel, concrete, wood, and reinforcement bars to be modeled. Explicit integration algorithms including
the Modified KR-a algorithm developed by the PI (Kolay et al. 2015, Kolay and Ricles 2014, 2019); the
Rosenbrok-W algorithm (Lamarche et al. 2009), and the implicit HHT-a integration algorithm (Hilber et al.
1977) that are all unconditionally stable are available for conducting real-time hybrid simulations.

EXAMPLE PROJECTS
HybridFEM-MH and HyCoM-3D have been successfully used by researchers at the NHERI Lehigh EF to
perform numerous projects involving real-time hybrid simulations of structural steel, composite steel and




concrete, and reinforced concrete systems (Karavasilis et al. 2012, Chen et al. 2009, 2012, Chen and Ricles
2011a,b, Chae et al. 2013b, 2014). This includes 3-D multi-hazard real-time hybrid simulations of a 40 story
building subjected to earthquake and wind natural hazards (Kolay et al. 2020, Al-Subaihawi et al. 2020),
see Figures 6 and 7. The results from this research has demonstrated the importance of placing
supplemental damper systems in tall buildings to mitigate the damaging effects of earthquakes and wind
storms to such structures.
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Figure 6. 3D Real-Time Hybrid Simulation of a 40-Story Building Subjected to Earthquake Hazards
(Ricles & Cao, Lehigh University).
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The portfolio of research projects includes real-time hybrid simulations that investigate the effects of
multi-directional ground motions on moment resisting frames with non-structural components (see
Figure 8). Researchers have also performed large-scale characterization tests at the NHERI Lehigh EF
involving coupled reinforced concrete shear wall systems subjected to multi-directional loading, see
Figure 9. Self-centering steel frame systems have also been tested using hybrid simulation (Figure 10(a)),
in addition to performing real-time hybrid simulations with experimental substructure consisting of semi-
active controlled dampers (see Figure 10(b)). In addition, full-scale experimental testing complemented
by large computational finite element studies have been conducted by researchers at the NHERI Lehigh
EF to advance knowledge on the performance of seismic collectors in steel building structures, see Figure
11. The outcomes of these test programs have led to the creation and validation of concepts for

sustainable civil infrastructure systems.
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Figure 9. Coupled Shear Wall Test Subject
to Multi-directional Loading (Yahya
Kurama, Notre Dame & Michael McGinnis
UT Tyler).

Figure 10. Lehigh EF Large-scale (a) Self-Centering Lateral Force Resisting System (Richard Sause,
Lehigh University), and (b) RTHS Semi-active Controlled Damper Testbed (Shirley Dyke, Purdue

University).
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Figure 11 Full-scale Investigation on the Performance of Seismic Collectors in Steel Building
Structures: (a) Finite Element Modeling and Parametric Study; (b) 2-million Pound Test Setup for
Full-scale Experiment Study (Robert B. Fleischman, University of Arizona).

In addition to the sustainability of structural systems, resiliency also dictates that the contents of buildings
be protected against the effects of natural hazards. Real-time hybrid simulations on floor isolation systems
(FIS) have been conducted to evaluate the performance of these type of isolation systems under various
hazard levels of multi-directional earthquake motions in protecting sensitive electronic equipment of
mission-critical data centers (Figure 12). The multi-directional shake table was used to perform real-time
hybrid shake table testing, where the floor isolation system was positioned on the upper floor of a multi-
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story building with translational and torsional motions (Figures 12, 13). The outcomes of these tests led
to the validation of FIS in protecting equipment in mission-critical data centers (Figure 14).
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Figure 12. RTHS of FIS in Buildings Subject to Dynamic Loading (Scott Harvey, University of Oklahoma).
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Figure 13. RTHS of FIS in moment resisting frames subject to multi-directional earthquake ground
motions (Scott Harvey, University of Oklahoma).
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Figure 14. RTHS Results: lllustration of the Reduction in Detrimental Equipment Accelerations By

Using an FIS (Scott Harvey, University of Oklahoma).
Finally, a capability building collaborative project has been performed with the Wall of Wind (WOW)
NHERI EF located at Florida International University. The goal of this project is to extend real-time hybrid
simulation to wind engineering, enabling the assessment of the aeroelastic response of structural systems
to wind loading to be accomplished. The method is named Real-time Aeroelastic Hybrid Simulation
(RTAHS). It involves the use of the WOW wind tunnel, where an aeroelastic wind tunnel model of the
system is located, combined with experimental and analytical substructures of the system located at the
NHERI Lehigh EF (see Figure 15). This research has demonstrated that RTAHS method can led to more
accurate test results compared to the conventional aero-dynamic test method currently in use in wind
tunnels.

3D Real-Time Aeroelastic Hybrid Simulation

3D Real-Time Aeroelastic Hybrid Simulation of a Nonlinear Wind Excited Tall Building (210 mph Wind Storm)
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