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Introduction: RTHS
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Introduction: RTHS
 Direct Integration Algorithms | "FE Modeling of Analytical Substructure |

> Explicit formulation Displacement-based fiber elements
» Unconditional stability Q Curvature vahrleds linearly
/ K -a me
M Controllable numerical damping— | » Requires many elements per structural
member to model nonlinear response
» Improved overshoot for high-frequency

modes » Increases number of DOFs

> Improved stability for nonlinear O State determination is straight forward

stiffening type systems

Force-based fiber elements

; O Equilibrium is strictly enforced

Modified KR-a method v' Material nonlinearity can be modeled

using a single element per structural
member

v" Reduces number of DOFs

0 Requires iterations at the element level
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Explicit Modified KR-a (MKR-a) Method

, , ) o4, 0>, and a3: model-based
Velocity update: Xni1 = Xp + Aty X, integration parameters

Displacement update: X1 =X, + AtXn + AtZaZXn

Weighted equations of motion: M§n+1 + CXn+1_af + KXn+1_af — Fn+1_af

where,
§n+1 = (I - a3)Xp4q + 03X,
Xn+1—af = (1 - af)xn+1 + ann
Xn+1—af = (1 - “f)xn+1 + ar Xy
For1-a, = (1= ap)Fa1 + asFy
Initial acceleration: MX, = [F, — CX, — KX,]

Kolay, C., & Ricles, J. M. (2014). Development of a family of unconditionally stable explicit direct integration algorithms
with controllable numerical energy dissipation. Earthquake Engineering and Structural Dynamics, 43(9), 1361-1380.
http://doi.org/10.1002/ege.2401




Integration Parameters

QO Parameter controlling numerical energy dissipation
> po = Spectral radius when Q = wAt = o

e variesintherange 0 < p, <1

> pPo = 1. No numerical energy dissipation

> po = 0: Asymptotic annihilation

MKR-a: One parameter (p,)

Q Scalar int

> Q= -

_ 4
; family of algorithms :G+7)
O Model-basea integraton parameter martrices:
> ay = [Mjp +yAtCip + AL°K;p]~"M,p; A = G + V) aq

> a3 = [MIP + ]/Atclp + IBAtZKIp]_l[amMIp + afyAtCIp + afﬁAtzKIp]

» |P stands for integration parameters

» M;p, C;p, and K;, need to be formed based on the hybrid system




Numerical Characteristics

Compare based on same high-frequency dissipation

. {Poo for KR—a and G—a methods G-a: Implicit generalized-a method

Pco = 2
P& for MKR—a method (Chung & Hulbert, 1993)

Dashed lines (- -): KR-«av and G-av; Solid lines (—): MKR-«
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At = integration time step size; T = undamped natural period of an SDOF oscillator
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Force-Based (FB) Element State Determination

O Given element deformations v, need element restoring forces s

O Know the force interpolation function
» Constant axial force and linear bending moment if no element loads

O State determination is not straight forward in a standard stiffness based FE program

0 Spacone et al. (1996) developed an
iterative procedure

N > Not well suited for RTHS
. ™ O Neuenhofer and Filippou (1997) proposed
7 a noniterative procedure

» Uses iteration at the structure level
(Newton-Raphson type)

d=ld, dz]z > Not applicable for RTHS using explicit
D=[D, D] T algorithms

v=[ry vz V3]

s=[s1 sz 53T O New implementation scheme based on

Spacone et al. (1996) and Neuenhofer
and Filippou (1997)

» Fixed number of iterations

» Carry over unbalanced section forces and
correct in the next time step

LEHIGH ) : ) DESWGNSAFE Cl
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FB Implementation Scheme

Yes Element

converged?

ﬁvj-l_l — _v}

A

(K)n+1 - Kj ]
(f),,, =)

(S)n+1 = s/ — (K)n+1V{~
(DG) . =b)(pss |

(Dy(™), ., = (D)., —DiX)

(5)n+1 — Sf )
(W) ., =D/

(Dy()),,, = D/, (x)

-

J = iteration index
B = CO = Carry over

(fix)),,,, = Fix)
(5)yy =5 ] (Shner =5/ — (Khpaav)
(Dix1),, =Dlix) "ms (D(x)),, = Bix)(she,, n

(Dyix)),,, = Dhix) (Dyix)),,, = (Dix),,, —Dhxd




Element Convergence Criteria
U Employed the energy based criteria (Taucer et al., 1991)

(NEP)ps1 = (EL) . < Etol for j>1
" (E‘]}=1er+] B
where
(EP),., = (&))" (av)) = (av/~") K/ (av) )
(EF=Y), = (A=) (V1) = (AV)s1)" (K),, (AV)n-1

Q Atypical value of Etol = 1071 is used (Taucer et al.,
1991)
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Prototype and RTHS Configuration
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Modeling of Inherent Damping

Q In RTHS using explicit algorithms generally mass and
Initial stiffness proportional damping is used

» Known to produce unrealistically large damping forces when
structure undergoes significant inelastic deformations

» Can use nonproportional damping (Kolay et al., 2015)

* Not a good model for FB elements because deformations localize at some
integration points not in an entire element

0 Use tangent stiffness for FB elements; it is readily
available

» For other elements, if any, use Iinitial stiffness

» Damping forces are calculated for each FB element inside state
determination process

» 3% damping to first (T; = 0.43 s) and second modes (T, = 0.12

S) of system
I Kolay, C., Ricles, J. M., Marullo, T. M., Mahvashmohammadi, A., & Sause, R. (2015). Implementation and application of the

unconditionally stable explicit parametrically dissipative KR-a method for real-time hybrid simulation. Earthquake Engineering &
Structural Dynamics, 44(5), 735—755. http://doi.org/10.1002/ege.2484
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Assessment of FB Element Implementation

Consider only the RC SMRF

Perform numerical simulation using the same ground
motion

Study the influence of max number of iterations
(maxIter) with CO=Yes and CO= No based on a
comparison with a reference solution

» Reference solution: Newmark average acceleration algorithm

and all the FB elements were allowed to converge with Etol =
10—16

Numerical damping is not required: p5, = 1.0

Time step At = ﬁ s, smallest time step that can be

used in real-time for the RTHS configuration with
maxIter = 2 for all FB elements




Assessment of FB Element Implementation

Roof displacement from numerical simulation

memmmes Heference mummm CO) = No = = = C0O = Yes

| | | | | | L (0~ L ()
0.2 + (a) mazlter =1 CO = No: NEE=80.09%; NRMSE=6.43% - NEE — |7=! B =
CO = Yes: NEE=1.65%; NRMSE=0.19% & (502
0.1 L (%n)

0

-0.1

Displacement (m)

Iy . ~ 32
7 £ s
NRMSE =

max(X) — min(X)

-0.2

0 CO=No with maxIter = 1
produces large error

0.2

(b) maxIter =2 CO = No: NEE=1.69%; NRMSE=0.28%

CO = Yes: NEE=0.52%: NRMSE=0.21% 0

0.1 CO=Yes compare well with

reference

Even maxIter = 1 with
CO produces acceptable
results

Displacement (m)

Increasing maxlIter

20 30 40 50 60 70 20 90 Iincreases accuracy
Time (s)
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Moment-curvature response from numerical simulation at the first-story

Assessment of FB Element Implementation

south side column base

Reference —-—-— CO=No — — = CO=Yes
500 | —~— 500 | |
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Assessment of FB Element Implementation

Energy increment (E]j=maxlter+1)n = (AS])T(AVJ) for first-story south
side column element from numerical simulation

—4
2[] I I I I I I I E} >§:-\'L-l[}l I I I I [ I ]
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) |
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Assessment of FB Element Implementation

Peak story-drift (%) from numerical simulations with CO=Yes

Story  Reference  maxlter =1 maxlter =2

I 2.566 2.536 2.547
2 2.925 2913 2.906




Assessment of FB Element Implementation
0 CO=Yes produces an accurate result even if no iteration
Is performed at the element level (maxiter = 1)
0 Benefit of CO=Yes reduces with increasing maxlter

Q Itis useful to perform the carry over (CO=Yes) because
additional computation effort is small

» Use only CO=Yes for RTHS
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RTHS: Model-Based Integration Parameters

0 Model-based integration parameters (a4, a,, and as)
require M;p, C;p, and K;p

QO For the present study

» M;p = M =analytically modeled mass matrix
« Experimental substructure mass is small

» Cip = (agM + a;K7) + C¢,
- K{ = initial stiffness matrix of analytical substructure
« Cg, =equivalent damping matrix of experimental substructure
* a, and a, are Rayleigh damping coefficients

> K;p =K + Kgq
* K¢, =equivalent stiffness matrix of experimental substructure

0 How can we determine C¢, and Kg,?

O LEHICH #, P & DESIGNSATEC
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Damper Characteriggtion
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Model-Based Integration Parameters

Linearization of nonlinear Maxwell model at a small velocity (0.5 in/s) and determination
of frequency dependent equivalent Kelvin-Voigt model parameters

x 104 u
10 . . | _
a7/ Kp Ciir
—~ KD uD’ fD
13
$ ’ ug, fx uc, fe up = '@t
Linearized Maxwell model
S L K (&) = Kp0D?
eq ~\2
6000 Cin | 1+ (@)
%4000- 7
——
S 2000/ - — up, fp
Cy; = S — C:
Uil Ucsn. 1000 “¥Y 200 C. (&) = LT
o eq

Linegﬁ%d ts?on

Equivalent Kelvin-Voigt model
d What is the value of @?




RTHS Results: Instability!

Po = 0.50, @ = w; and maxIter = 2 for all FB elements

15 10 |
Nk High-frequency oscillations:
10 | B Ry \(/}{‘ Ui 1 O Causes:
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Influence of Model-Based Integrati/on Parameters
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RTHS Test Matrix

4 Influence of numerical dissipation and model-based
parameters on stability and accuracy of RTHS results
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Comparison of Selected RTHS: Accuracy

500

400
300
200
100

0
-100
-200
-300

Measured damper force (kN)

-400

-500 | | | | |
-30 -20 -10 0 10 20 30

Measured damper displacement (mm)

Comparison of story drifts (%)

~ ~ o . 50 Accuracy is not influenced by @
Story 0= O=7 0="5 and pg,, provided stability is
P =025 po =07 pe=0.75  achieved
| 3.372 3.372 3.391 ,‘
2 1.004 0.988 1005 B Bupsmierasy




RTHS: Influence of Fixed Number of lterations
a Numerical simulation of RTHS was performed
(offline simulation)

a All FB elements were allowed to converge with
Etol = 10716

0 Required 8 iterations for most of the elements

0 Measured damper force from the RTHS was
used




RTHS: Influence of Fixed Number of Iterations
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MCE Level Test Demonstration
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Summary and Conclusions

0 Direct integration algorithm 0 FE modeling of analytical

> Reviewed the MKR-a method substructure

> Influence of model-based i _Pr0||oosedta? eﬁ'C'entd f
integration parameters on stability :cmp ertr:en zloln procte 1Eure or
and accuracy of RTHS orce-based elements for

application to RTHS

> Accuracy is not influenced by _ _
model-based integration > As_sessed th? 'Tp|edm£_rrlltjgon
parameters and numerical usm?t numerical an
damping, provided stability is [
achieved > Proposed implementation

> Controllable numerical energy procedure is well suited for RTHS

and large-scale numerical
simulations using explicit
algorithms

dissipation in MKR-a method
makes it well suited for RTHS of
complex structures
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