Real-Time Hybrid Simulation of a Reinforced Concrete Building using Force-Based Elements and Advanced Explicit Integration Algorithms

> Chinmoy Kolay, Ph.D. Research Engineer

James Ricles, Ph.D., PE Principle Investigator

NHERI Lehigh EF

Outline

- Introduction
- Advanced explicit direct integration algorithms with numerical damping
 - Formulation
 - Numerical characteristics
- Force-based fiber element implementation
- Prototype structure
- Numerical assessment of element implementation scheme
- Real-time hybrid simulation (RTHS)
 - Model-based integration parameters
 - Stability, accuracy, and numerical dissipation
 - Influence of fixed number of element iterations
- Summary and conclusions

Introduction: RTHS

Kolay, C. "Parametrically Dissipative Explicit Direct Integration Algorithms for Computational and Experimental Structural Dynamics". Ph.D. Dissertation. Department of Civil and Environmental Engineering, Lehigh University, Bethlehem, USA, 2016

Introduction: RTHS

Direct Integration Algorithms	FE Modeling of Analytical Substructure			
Explicit formulation	Displacement-based fiber elements			
Unconditional stability	\Box Curvature varies linearly KR- α method			
Controllable numerical damping	 Requires many elements per structural member to model nonlinear response Increases number of DOFs 			
Improved overshoot for high-frequency modes				
Improved stability for nonlinear	State determination is straight forward			
stiffening type systems	Force-based fiber elements			
	Equilibrium is strictly enforced			
Modified KR- α method	✓ Material nonlinearity can be modeled			
Force-based fiber element	using a single element per structural member			
implementation with fixed number of iterations	✓ Reduces number of DOFs			
	Requires iterations at the element level			

DESI

Outline

- Introduction
- Advanced explicit direct integration algorithms with numerical damping
 - Formulation
 - Numerical characteristics
- Force-based fiber element implementation
- Prototype structure
- Numerical assessment of element implementation scheme
- Real-time hybrid simulation (RTHS)
 - Model-based integration parameters
 - Stability, accuracy, and numerical dissipation
 - Influence of fixed number of element iterations
- Summary and conclusions

Explicit Modified KR- α (MKR- α) Method

Velocity update:

$$\dot{\mathbf{X}}_{n+1} = \dot{\mathbf{X}}_n + \Delta t \boldsymbol{\alpha}_1 \ddot{\mathbf{X}}_n$$

 α_1 , α_2 , and α_3 : model-based integration parameters

Displacement update:

$$\mathbf{X}_{n+1} = \mathbf{X}_n + \Delta t \dot{\mathbf{X}}_n + \Delta t^2 \boldsymbol{\alpha}_2 \ddot{\mathbf{X}}_n$$

Weighted equations of motion: $\mathbf{M}\hat{\mathbf{X}}_{n+1} + \mathbf{C}\hat{\mathbf{X}}_{n+1-\alpha_f} + \mathbf{K}\mathbf{X}_{n+1-\alpha_f} = \mathbf{F}_{n+1-\alpha_f}$ where.

$$\begin{aligned} \hat{\mathbf{X}}_{n+1} &= (\mathbf{I} - \alpha_3) \mathbf{\ddot{X}}_{n+1} + \alpha_3 \mathbf{\ddot{X}}_n \\ \dot{\mathbf{X}}_{n+1-\alpha_f} &= (1 - \alpha_f) \mathbf{\dot{X}}_{n+1} + \alpha_f \mathbf{\dot{X}}_n \\ \mathbf{X}_{n+1-\alpha_f} &= (1 - \alpha_f) \mathbf{X}_{n+1} + \alpha_f \mathbf{X}_n \\ \mathbf{F}_{n+1-\alpha_f} &= (1 - \alpha_f) \mathbf{F}_{n+1} + \alpha_f \mathbf{F}_n \\ \mathbf{M} \mathbf{\ddot{X}}_0 &= [\mathbf{F}_0 - \mathbf{C} \mathbf{\dot{X}}_0 - \mathbf{K} \mathbf{X}_0] \end{aligned}$$

Initial acceleration:

Kolay, C., & Ricles, J. M. (2014). Development of a family of unconditionally stable explicit direct integration algorithms with controllable numerical energy dissipation. *Earthquake Engineering and Structural Dynamics*, 43(9), 1361–1380. http://doi.org/10.1002/eqe.2401

Integration Parameters

Parameter controlling numerical energy dissipation

- \succ ρ_∞ = spectral radius when Ω = ωΔt → ∞
 - varies in the range $0 \le \rho_{\infty} \le 1$
- ▶ $\rho_{\infty} = 1$: No numerical energy dissipation
- ▶ $\rho_{\infty} = 0$: Asymptotic annihilation

Scalar interview

 $\succ \alpha_m = \frac{1}{k}$

MKR- α : One parameter (ρ_{∞}) family of algorithms

$$\beta = \frac{1}{2} \left(\frac{1}{2} + \gamma \right)$$

Model-based integration parameter matrices:

$$\mathbf{\lambda}_{1} = [\mathbf{M}_{IP} + \gamma \Delta t \mathbf{C}_{IP} + \beta \Delta t^{2} \mathbf{K}_{IP}]^{-1} \mathbf{M}_{IP}; \qquad \mathbf{\alpha}_{2} = \left(\frac{1}{2} + \gamma\right) \mathbf{\alpha}_{1}$$

 $\succ \ \boldsymbol{\alpha}_{3} = [\mathbf{M}_{IP} + \gamma \Delta t \mathbf{C}_{IP} + \beta \Delta t^{2} \mathbf{K}_{IP}]^{-1} [\alpha_{m} \mathbf{M}_{IP} + \alpha_{f} \gamma \Delta t \mathbf{C}_{IP} + \alpha_{f} \beta \Delta t^{2} \mathbf{K}_{IP}]$

- IP stands for integration parameters
- \succ **M**_{*IP*}, **C**_{*IP*}, and **K**_{*IP*} need to be formed based on the hybrid system

Kolay, C., & Ricles, J. M. (2016). Improved explicit integration algorithms for structural dynamic analysis with unconditional stability and numerical dissipation. Submitted to *Journal of Earthquake Engineering*.

Numerical Characteristics

Compare based on same high-frequency dissipation

 $\rho_{\infty}^{*} = \begin{cases} \rho_{\infty} & \text{for KR} - \alpha \text{ and } G - \alpha \text{ methods} \\ \rho_{\infty}^{2} & \text{for MKR} - \alpha \text{ method} \end{cases}$

G- α : Implicit generalized- α method (Chung & Hulbert, 1993)

 Δt = integration time step size; T = undamped natural period of an SDOF oscillator

Outline

- Introduction
- Advanced explicit direct integration algorithms with numerical damping
 - Formulation
 - Numerical characteristics
- Force-based fiber element implementation
- Prototype structure
- Numerical assessment of element implementation scheme
- Real-time hybrid simulation (RTHS)
 - Model-based integration parameters
 - Stability, accuracy, and numerical dissipation
 - Influence of fixed number of element iterations
- Summary and conclusions

Force-Based (FB) Element State Determination

- Given element deformations v, need element restoring forces s
- □ Know the force interpolation function
 - Constant axial force and linear bending moment if no element loads

□ State determination is not straight forward in a standard stiffness based FE program

- Spacone et al. (1996) developed an iterative procedure
 - Not well suited for RTHS
 - Neuenhofer and Filippou (1997) proposed a noniterative procedure
 - Uses iteration at the structure level (Newton-Raphson type)
 - Not applicable for RTHS using explicit algorithms
- New implementation scheme based on Spacone et al. (1996) and Neuenhofer and Filippou (1997)
 - Fixed number of iterations
 - Carry over unbalanced section forces and correct in the next time step

Kolay, C., & Ricles, J. M. (2016). Force-based frame element implementation for real-time hybrid simulation using explicit direct integration algorithms. Submitted to *Journal of Structural Engineering*.

Element Convergence Criteria

Employed the energy based criteria (Taucer et al., 1991)

$$(NEI^{j})_{n+1} = \frac{(EI^{j})_{n+1}}{(EI^{j=1})_{n+1}} \le Etol \quad \text{for } j > 1$$

where

$$(EI^{j})_{n+1} = (\Delta \mathbf{s}^{j})^{T} (\Delta \mathbf{v}^{j}) = (\Delta \mathbf{v}_{r}^{j-1})^{T} \mathbf{K}^{j-1} (\Delta \mathbf{v}_{r}^{j-1})$$
$$(EI^{j=1})_{n+1} = (\Delta \mathbf{s}^{j=1})^{T} (\Delta \mathbf{v}^{j=1}) = ((\Delta \mathbf{v})_{n+1})^{T} (\mathbf{K})_{n} (\Delta \mathbf{v})_{n+1}$$

A typical value of $Etol = 10^{-16}$ is used (Taucer et al., 1991)

Outline

- Introduction
- Advanced explicit direct integration algorithms with numerical damping
 - Formulation
 - Numerical characteristics
- Force-based fiber element implementation
- Prototype structure
- Numerical assessment of element implementation scheme
- Real-time hybrid simulation (RTHS)
 - Model-based integration parameters
 - Stability, accuracy, and numerical dissipation
 - Influence of fixed number of element iterations
- Summary and conclusions

Prototype and RTHS Configuration

REAL-TIME MULTI-DIRECTIONAL SIMULATIO

(Scott and Fenves, 2006)

Modeling of Inherent Damping

- In RTHS using explicit algorithms generally mass and initial stiffness proportional damping is used
 - Known to produce unrealistically large damping forces when structure undergoes significant inelastic deformations
 - Can use nonproportional damping (Kolay et al., 2015)
 - Not a good model for FB elements because deformations localize at some integration points not in an entire element
- Use tangent stiffness for FB elements; it is readily available
 - For other elements, if any, use initial stiffness
 - Damping forces are calculated for each FB element inside state determination process
 - > 3% damping to first ($T_1 = 0.43$ s) and second modes ($T_2 = 0.12$ s) of system

Kolay, C., Ricles, J. M., Marullo, T. M., Mahvashmohammadi, A., & Sause, R. (2015). Implementation and application of the unconditionally stable explicit parametrically dissipative KR-α method for real-time hybrid simulation. *Earthquake Engineering & Structural Dynamics*, *44*(5), 735–755. http://doi.org/10.1002/eqe.2484

Outline

- Introduction
- Advanced explicit direct integration algorithms with numerical damping
 - Formulation
 - Numerical characteristics
- Force-based fiber element implementation
- Prototype structure
- Numerical assessment of element implementation scheme
- Real-time hybrid simulation (RTHS)
 - Model-based integration parameters
 - Stability, accuracy, and numerical dissipation
 - Influence of fixed number of element iterations
- Summary and conclusions

- Consider only the RC SMRF
- Perform numerical simulation using the same ground motion
- Study the influence of max number of iterations (maxIter) with CO=Yes and CO= No based on a comparison with a reference solution
 - ➢ Reference solution: Newmark average acceleration algorithm and all the FB elements were allowed to converge with Etol =10⁻¹⁶
- □ Numerical damping is not required: $\rho_{\infty}^* = 1.0$
- □ Time step $\Delta t = \frac{3}{1024}$ s, smallest time step that can be used in real-time for the RTHS configuration with maxIter = 2 for all FB elements

Roof displacement from numerical simulation

Moment-curvature response from numerical simulation at the first-story south side column base

Energy increment $(EI^{j=maxIter+1})_n = (\Delta \mathbf{s}^j)^T (\Delta \mathbf{v}^j)$ for first-story south side column element from numerical simulation

Peak story-drift (%) from numerical simulations with CO=Yes

Story	Reference	maxIter = 1	maxIter = 2
1	2.566	2.536	2.547
2	2.925	2.913	2.906

- □ CO=Yes produces an accurate result even if no iteration is performed at the element level (maxIter = 1)
- □ Benefit of CO=Yes reduces with increasing *maxIter*
- It is useful to perform the carry over (CO=Yes) because additional computation effort is small
 - Use only CO=Yes for RTHS

Outline

- Introduction
- Advanced explicit direct integration algorithms with numerical damping
 - Formulation
 - Numerical characteristics
- Force-based fiber element implementation
- Prototype structure
- Numerical assessment of element implementation scheme
- Real-time hybrid simulation (RTHS)
 - Model-based integration parameters
 - Stability, accuracy, and numerical dissipation
 - Influence of fixed number of element iterations
- Summary and conclusions

RTHS: Model-Based Integration Parameters

- □ Model-based integration parameters (α_1 , α_2 , and α_3) require M_{IP} , C_{IP} , and K_{IP}
- □ For the present study
 - \blacktriangleright **M**_{*IP*} = **M** = analytically modeled mass matrix
 - Experimental substructure mass is small
 - $\succ \mathbf{C}_{IP} = (a_0 \mathbf{M} + a_1 \mathbf{K}_I^a) + \mathbf{C}_{eq}^e$
 - \mathbf{K}_{I}^{a} = initial stiffness matrix of analytical substructure
 - C_{eq}^{a} = equivalent damping matrix of experimental substructure
 - a_0 and a_1 are Rayleigh damping coefficients
 - $\succ \mathbf{K}_{IP} = \mathbf{K}_{I}^{a} + \mathbf{K}_{eq}^{e}$
 - \mathbf{K}_{eq}^{e} = equivalent stiffness matrix of experimental substructure
- \Box How can we determine C_{eq}^{e} and K_{eq}^{e} ?

Damper Characterization

Model-Based Integration Parameters

Linearization of nonlinear Maxwell model at a small velocity (0.5 in/s) and determination of frequency dependent equivalent Kelvin-Voigt model parameters

 \Box What is the value of $\widetilde{\omega}$?

RTHS Results: Instability!

 $\rho_{\infty}^* = 0.50, \, \widetilde{\omega} = \omega_1 \text{ and } maxIter = 2 \text{ for all FB elements}$

High-frequency oscillations: Causes:

- Underestimation error in C_{eq} & K_{eq}
- Noise in restoring forces
- ATS compensator amplifying higher frequencies
- **Remedies**:
 - Add more numerical damping
 - \succ Increase C_{eq} and K_{eq}

Kolay, C. "Parametrically Dissipative Explicit Direct Integration Algorithms for Computational and Experimental Structural Dynamics". Ph.D. Dissertation. Department of Civil and Environmental Engineering, Lehigh University, Bethlehem, USA, 2016

RTHS Test Matrix

Influence of numerical dissipation and model-based parameters on stability and accuracy of RTHS results

Comparison of Selected RTHS: Accuracy

Comparison of story drifts (%)

Story	$\widetilde{\omega} = \omega_1;$ $\rho_{\infty}^* = 0.25$	$\widetilde{\omega} = \frac{\omega_1}{2};$ $\rho_{\infty}^* = 0.75$	$\widetilde{\omega} = 0; \ ho_{\infty}^* = 0.75$
1	3.372	3.372	3.391
2	1.004	0.988	1.005

Accuracy is not influenced by $\widetilde{\omega}$ and $\rho_{\infty}^{*},$ provided stability is achieved

RTHS: Influence of Fixed Number of Iterations

- Numerical simulation of RTHS was performed (offline simulation)
- □ All FB elements were allowed to converge with $Etol = 10^{-16}$
- Required 8 iterations for most of the elements
 Measured damper force from the RTHS was used

RTHS: Influence of Fixed Number of Iterations

MCE Level Test Demonstration

Summary and Conclusions

- Direct integration algorithm
 - > Reviewed the MKR- α method
 - Influence of model-based integration parameters on stability and accuracy of RTHS
 - Accuracy is not influenced by model-based integration parameters and numerical damping, provided stability is achieved
 - Controllable numerical energy dissipation in MKR-α method makes it well suited for RTHS of complex structures

- FE modeling of analytical substructure
 - Proposed an efficient implementation procedure for force-based elements for application to RTHS
 - Assessed the implementation using numerical and RTHS results
 - Proposed implementation procedure is well suited for RTHS and large-scale numerical simulations using explicit algorithms

References

- Chae, Y., Kazemibidokhti, K., & Ricles, J. M. (2013). Adaptive time series compensator for delay compensation of servo-hydraulic actuator systems for real-time hybrid simulation. *Earthquake Engineering & Structural Dynamics*, *4*2(11), 1697–1715. doi:10.1002/eqe
- Chung, J., & Hulbert, G. M. (1993). A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-alpha Method. *Journal of Applied Mechanics*, *6*.
- Kolay, C. "Parametrically Dissipative Explicit Direct Integration Algorithms for Computational and Experimental Structural Dynamics".
 Ph.D. Dissertation. Department of Civil and Environmental Engineering, Lehigh University, Bethlehem, USA, 2016
- □ Kolay, C., & Ricles, J. M. (2014). Development of a family of unconditionally stable explicit direct integration algorithms with controllable numerical energy dissipation. *Earthquake Engineering and Structural Dynamics*, *43*(9), 1361–1380. http://doi.org/10.1002/eqe.2401
- □ Kolay, C., & Ricles, J. M. (2016). Force-based frame element implementation for real-time hybrid simulation using explicit direct integration algorithms. Submitted to *Journal of Structural Engineering*.
- □ Kolay, C., & Ricles, J. M. (2016). Improved explicit integration algorithms for structural dynamic analysis with unconditional stability and numerical dissipation. Submitted to *Journal of Earthquake Engineering*.
- Kolay, C., Ricles, J. M., Marullo, T. M., Mahvashmohammadi, A., & Sause, R. (2015). Implementation and application of the unconditionally stable explicit parametrically dissipative KR-α method for real-time hybrid simulation. *Earthquake Engineering & Structural Dynamics*, 44(5), 735–755. http://doi.org/10.1002/eqe.2484
- Neuenhofer, A., & Filippou, F. C. (1997). Evaluation of Nonlinear Frame Finite-Element Models. *Journal of Structural Engineering*, 123(7), 958–966. doi:10.1061/(ASCE)0733-9445(1997)123:7(958)
- Newmark, N. (1959). A method of computation for structural dynamics. Proc. ASCE, Journal of the Engineering Mechanics Division, 85(3), 67–94.
- Scott, M. H., & Fenves, G. L. (2006). Plastic Hinge Integration Methods for Force-Based Beam–Column Elements. *Journal of Structural Engineering*, 132(2), 244–252. doi:10.1061/(ASCE)0733-9445(2006)132:2(244)
- Spacone, E., Ciampi, V., & Filippou, F. C. (1996). Mixed formulation of nonlinear beam finite element. *Computers & Structures*, 58(I), 71–83.
- Taucer, F. F., Spacone, E., & Filippou, F. C. (1991). A fiber beam-column element for seismic response analysis of reinforced concrete structures (Vol. EERC-91/17).

LSS

Acknowledgements

- Financial support provided by the P.C. Rossin College of Engineering and Applied Science (RCEAS) fellowship and the Gibson fellowship through the CEE Department, Lehigh University.
- The testing was performed at the NHERI Lehigh Experimental Facility, whose operation is supported by the National Science Foundation

Thank you

