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ATS Compensator  (Chae et al., 2013)

Kolay, C. “Parametrically Dissipative Explicit Direct Integration Algorithms for Computational and Experimental Structural Dynamics”. 

Ph.D. Dissertation. Department of Civil and Environmental Engineering, Lehigh University, Bethlehem, USA, 2016



Introduction: RTHS
Direct Integration Algorithms FE Modeling of Analytical Substructure

 Explicit formulation

 Unconditional stability

 Controllable numerical damping

 Improved overshoot for high-frequency 

modes

 Improved stability for nonlinear 

stiffening type systems

Displacement-based fiber elements

 Curvature varies linearly

 Requires many elements per structural 

member to model nonlinear response

 Increases number of DOFs

 State determination is straight forward

Force-based fiber elements

 Equilibrium is strictly enforced

 Material nonlinearity can be modeled 

using a single element per structural 

member

 Reduces number of DOFs

 Requires iterations at the element level

Modified KR-𝜶 method

Force-based fiber element 

implementation with fixed number 

of iterations
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KR-𝛼 method
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Explicit Modified KR-𝛼 (MKR-𝛼) Method

Velocity update: ሶ𝐗𝒏+1 = ሶ𝐗𝒏 + ∆𝑡𝛂𝟏 ሷ𝐗𝑛

Displacement update: 𝐗𝒏+1 = 𝐗𝒏 + Δ𝑡 ሶ𝐗𝒏 + ∆𝑡2𝛂𝟐 ሷ𝐗𝒏

Weighted equations of motion: 𝐌෡ሷ𝐗𝒏+1 + 𝐂 ሶ𝐗𝒏+1−𝛼𝑓 + 𝐊𝐗𝒏+1−𝛼𝑓 = 𝐅𝒏+1−𝛼𝑓

where,

෡ሷ𝐗𝒏+1 = 𝐈 − 𝛂𝟑 ሷ𝐗𝒏+1 + 𝛂𝟑 ሷ𝐗𝒏

ሶ𝐗𝒏+1−𝛼𝑓 = 1 − 𝛼𝑓 ሶ𝐗𝒏+1 + 𝛼𝑓 ሶ𝐗𝒏

𝐗𝒏+1−𝛼𝑓 = 1 − 𝛼𝑓 𝐗𝒏+1 + 𝛼𝑓𝐗𝒏

𝐅𝒏+1−𝛼𝑓 = 1 − 𝛼𝑓 𝐅𝒏+1 + 𝛼𝑓𝐅𝒏

Initial acceleration: 𝐌 ሷ𝐗0 = [𝐅𝟎 − 𝐂 ሶ𝐗0 − 𝐊𝐗0]

Kolay, C., & Ricles, J. M. (2014). Development of a family of unconditionally stable explicit direct integration algorithms 

with controllable numerical energy dissipation. Earthquake Engineering and Structural Dynamics, 43(9), 1361–1380. 

http://doi.org/10.1002/eqe.2401

𝛂𝟏, 𝛂𝟐, and 𝛂𝟑: model-based 

integration parameters



Integration Parameters

 Parameter controlling numerical energy dissipation

 𝜌∞ = spectral radius when  Ω = 𝜔Δ𝑡 → ∞

• varies in the range 0 ≤ 𝜌∞ ≤ 1

 𝜌∞ = 1: No numerical energy dissipation

 𝜌∞ = 0: Asymptotic annihilation

 Scalar integration parameters:

 𝛼𝑚 =
2𝜌∞

3 +𝜌∞
2 −1

𝜌∞
3 +𝜌∞

2 +𝜌∞+1
;         𝛼𝑓 =

𝜌∞

𝜌∞+1
; 𝛾 =

1

2
− 𝛼𝑚 + 𝛼𝑓; 𝛽 =

1

2

1

2
+ 𝛾

 Model-based integration parameter matrices:

 𝜶𝟏 = 𝐌𝐼𝑃 + 𝛾Δ𝑡𝐂𝐼𝑃 + 𝛽Δ𝑡2𝐊𝐼𝑃
−1𝐌𝐼𝑃; 𝜶𝟐 =

1

2
+ 𝛾 𝜶𝟏

 𝜶𝟑 = 𝐌𝐼𝑃 + 𝛾Δ𝑡𝐂𝐼𝑃 + 𝛽Δ𝑡2𝐊𝐼𝑃
−1 𝛼𝑚𝐌𝐼𝑃 + 𝛼𝑓𝛾Δ𝑡𝐂𝐼𝑃 + 𝛼𝑓𝛽Δt

2𝐊𝐼𝑃

 IP stands for integration parameters

 𝐌𝐼𝑃, 𝐂𝐼𝑃, and 𝐊𝐼𝑃 need to be formed based on the hybrid system
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MKR-𝛼: One parameter (𝜌∞) 

family of algorithms

Kolay, C., & Ricles, J. M. (2016). Improved explicit integration algorithms for structural dynamic analysis with unconditional 

stability and numerical dissipation. Submitted to Journal of Earthquake Engineering.



Numerical Characteristics
Compare based on same high-frequency dissipation

𝜌∞
∗ = ቊ

𝜌∞ for KR−α and G−α methods

𝜌∞
2 for MKR−α method
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Δ𝑡 = integration time step size; 𝑇 = undamped natural period of an SDOF oscillator 

*

*

G-𝛼: Implicit generalized-𝛼 method

(Chung & Hulbert, 1993)

Lower 

modes of 
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(typ.)

Spurious 

higher 
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Force-Based (FB) Element State Determination
 Given element deformations 𝐯, need element restoring forces 𝐬

 Know the force interpolation function

 Constant axial force and linear bending moment if no element loads

 State determination is not straight forward in a standard stiffness based FE program

 Spacone et al. (1996) developed an 

iterative procedure

 Not well suited for RTHS

 Neuenhofer and Filippou (1997) proposed 

a noniterative procedure

 Uses iteration at the structure level 

(Newton-Raphson type)

 Not applicable for RTHS using explicit 

algorithms

 New implementation scheme based on 

Spacone et al. (1996) and Neuenhofer

and Filippou (1997)

 Fixed number of iterations

 Carry over unbalanced section forces and 

correct in the next time step
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FB Implementation Scheme

𝑗 = iteration index

CO = Carry over

Kolay, C., & Ricles, J. M. (2016). Force-based frame element implementation for real-time hybrid simulation using explicit direct 

integration algorithms. Submitted to Journal of Structural Engineering.
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Element Convergence Criteria
 Employed the energy based criteria (Taucer et al., 1991)

 A typical value of 𝐸𝑡𝑜𝑙 = 10−16 is used (Taucer et al., 

1991)
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Prototype and RTHS Configuration

 1999 Chi-Chi EQ record scaled to MCE hazard level

 Time step: Δ𝑡 =
3

1024
s

Prototype floor plan

Plastic hinge integration

(Scott and Fenves, 2006)

• Two-story RC SMRF with nonlinear 

viscous dampers

• Retail store located in Los Angeles area 

on a stiff soil site



Modeling of Inherent Damping
 In RTHS using explicit algorithms generally mass and 

initial stiffness proportional damping is used

 Known to produce unrealistically large damping forces when 

structure undergoes significant inelastic deformations

 Can use nonproportional damping (Kolay et al., 2015)

• Not a good model for FB elements because deformations localize at some 

integration points not in an entire element

 Use tangent stiffness for FB elements; it is readily 

available

 For other elements, if any, use initial stiffness

 Damping forces are calculated for each FB element inside state 

determination process

 3% damping to first (𝑇1 = 0.43 s) and second modes (𝑇2 = 0.12
s) of system

15
Kolay, C., Ricles, J. M., Marullo, T. M., Mahvashmohammadi, A., & Sause, R. (2015). Implementation and application of the 

unconditionally stable explicit parametrically dissipative KR-α method for real-time hybrid simulation. Earthquake Engineering & 

Structural Dynamics, 44(5), 735–755. http://doi.org/10.1002/eqe.2484



Outline

 Introduction

 Advanced explicit direct integration algorithms with numerical 
damping

 Formulation

 Numerical characteristics

 Force-based fiber element implementation

 Prototype structure

 Numerical assessment of element implementation scheme

 Real-time hybrid simulation (RTHS)

 Model-based integration parameters

 Stability, accuracy, and numerical dissipation

 Influence of fixed number of element iterations

 Summary and conclusions

16



Assessment of FB Element Implementation

 Consider only the RC SMRF

 Perform numerical simulation using the same ground 
motion

 Study the influence of max number of iterations 
(𝑚𝑎𝑥𝐼𝑡𝑒𝑟) with CO=Yes and CO= No based on a 
comparison with a reference solution

 Reference solution: Newmark average acceleration algorithm 
and  all the FB elements were allowed to converge with 𝐸𝑡𝑜𝑙 =
10−16

 Numerical damping is not required: 𝜌∞
∗ = 1.0

 Time step Δ𝑡 =
3

1024
s, smallest time step that can be 

used in real-time for the RTHS configuration with 
𝑚𝑎𝑥𝐼𝑡𝑒𝑟 = 2 for all FB elements

17
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Assessment of FB Element Implementation

 CO=No with 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 = 1
produces large error

 CO=Yes compare well with 

reference

 Even 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 = 1 with 

CO produces acceptable 

results

 Increasing 𝑚𝑎𝑥𝐼𝑡𝑒𝑟
increases accuracy

Roof displacement from numerical simulation
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Assessment of FB Element Implementation

Moment-curvature response from numerical simulation at the first-story 

south side column base
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Assessment of FB Element Implementation

Energy increment 𝐸𝐼𝑗=𝑚𝑎𝑥𝐼𝑡𝑒𝑟+1
𝑛
= Δ𝐬𝑗

𝑇
Δ𝐯𝑗 for first-story south 

side column element from numerical simulation



Assessment of FB Element Implementation

Peak story-drift (%) from numerical simulations with CO=Yes

21



Assessment of FB Element Implementation

 CO=Yes produces an accurate result even if no iteration 

is performed at the element level 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 = 1

 Benefit of CO=Yes reduces with increasing 𝑚𝑎𝑥𝐼𝑡𝑒𝑟

 It is useful to perform the carry over (CO=Yes) because 

additional computation effort is small

 Use only CO=Yes for RTHS

22
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RTHS: Model-Based Integration Parameters

 Model-based integration parameters (𝛂𝟏, 𝛂𝟐, and 𝛂𝟑) 
require 𝐌𝐼𝑃, 𝐂𝐼𝑃, and 𝐊𝐼𝑃

 For the present study

 𝐌𝐼𝑃 = 𝐌 =analytically modeled mass matrix

• Experimental substructure mass is small

 𝐂𝐼𝑃 = 𝑎0𝐌+ 𝑎1𝐊𝐼
𝑎 + 𝐂𝑒𝑞

𝑒

• 𝐊𝐼
𝑎 = initial stiffness matrix of analytical substructure

• 𝐂𝑒𝑞
𝑎 =equivalent damping matrix of experimental substructure

• 𝑎0 and 𝑎1 are Rayleigh damping coefficients

 𝐊𝐼𝑃 = 𝐊𝐼
𝑎 + 𝐊𝑒𝑞

𝑒

• 𝐊𝑒𝑞
𝑒 =equivalent stiffness matrix of experimental substructure

 How can we determine 𝐂𝑒𝑞
𝑒 and 𝐊𝑒𝑞

𝑒 ?

24
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Damper Characterization
 Model parameters identified using 

particle swarm optimization 

algorithm (PSO)

 𝐾𝐷 = 9.49 × 104 kN/m, 

 𝐶𝐷 = 644.96 kN-(s/m)𝛼

 𝛼 = 0.439
Nonlinear Maxwell damper model

𝑢𝐷, 𝑓𝐷

𝑢𝐶, 𝑓𝐶

𝐶𝐷, 𝛼𝐾𝐷

𝑢𝐾, 𝑓𝐾

𝑢𝐾



26

Model-Based Integration Parameters
Linearization of nonlinear Maxwell model at a small velocity (0.5 in/s) and determination 

of frequency dependent equivalent Kelvin-Voigt model parameters

 What is the value of ෥𝜔?

𝑢𝐷, 𝑓𝐷
𝑢𝐶, 𝑓𝐶

𝐶𝑙𝑖𝑛
𝐾𝐷

𝑢𝐾, 𝑓𝐾

𝑢𝐾

Linearized Maxwell model
𝑢𝐷 = 𝑒𝑖 ෥𝜔𝑡

𝑓𝐶 = 𝑓𝐷

ሶ𝑢𝐶ሶ𝑢𝐶𝑡ℎ𝑟

− ሶ𝑢𝐶𝑡ℎ𝑟

𝑓𝐷𝑡ℎ𝑟

−𝑓𝐷𝑡ℎ𝑟

𝐶𝑙𝑖𝑛 =
𝑓𝐷𝑡ℎ𝑟
ሶ𝑢𝐶𝑡ℎ𝑟

= 𝐶𝐷 ሶ𝑢𝐶𝑡ℎ𝑟
𝛼−1

Linearized 

Linearization

𝑢𝐷, 𝑓𝐷

𝐾𝑒𝑞 ෥𝜔 =
𝐾𝐷 𝜆෥𝜔 2

1 + 𝜆෥𝜔 2

𝐶𝑒𝑞 ෥𝜔 =
𝐶𝑙𝑖𝑛

1 + 𝜆෥𝜔 2

Equivalent Kelvin-Voigt model
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RTHS Results: Instability!
𝜌∞
∗ = 0.50, ෥𝜔 = 𝜔1 and 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 = 2 for all FB elements

High-frequency oscillations:

 Causes:

 Underestimation error 

in 𝐶𝑒𝑞 & 𝐾𝑒𝑞

 Noise in restoring 

forces

 ATS compensator 

amplifying higher 

frequencies

 Remedies:

 Add more numerical 

damping

 Increase 𝐶𝑒𝑞 and 𝐾𝑒𝑞

𝑥𝑡: target displacement

𝑥𝑚: measured displacement

𝑥𝑐: compensated displacement

Kolay, C. “Parametrically Dissipative Explicit Direct Integration Algorithms for Computational and Experimental Structural Dynamics”. 

Ph.D. Dissertation. Department of Civil and Environmental Engineering, Lehigh University, Bethlehem, USA, 2016
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Influence of Model-Based Integration Parameters

𝛼1 =
𝑚

𝑚+𝛾Δ𝑡𝑐+𝛽Δ𝑡2𝑘
; 𝛼2 =

1

2
+ 𝛾 𝛼1; 

𝛼3 =
𝛼𝑚𝑚+𝛼𝑓𝛾Δ𝑡𝑐+𝛼𝑓𝛽Δ𝑡

2𝑘

𝑚+𝛾Δ𝑡𝑐+𝛽Δ𝑡2𝑘

ሶ𝑥𝑛+1 = ሶ𝑥𝑛 + ∆𝑡𝛼1 ሷ𝑥𝑛
𝑥𝑛+1 = 𝑥𝑛 + Δ𝑡 ሶ𝑥𝑛 + ∆𝑡2𝛼2 ሷ𝑥𝑛
𝑚෠ሷ𝑥𝑛+1 + 𝑐 ሶ𝑥𝑛+1−𝛼𝑓 + 𝑘𝑥𝑛+1−𝛼𝑓 = 𝑓𝑛+1−𝛼𝑓

𝑥𝑘

𝑐

𝑚 𝑓

𝑥𝐾𝑒𝑞 ෥𝜔

𝐶𝑒𝑞 ෥𝜔

𝑚 𝑓



෥𝝎 𝝆∞
∗ = 𝟏. 𝟎 𝝆∞

∗ = 𝟎. 𝟕𝟓 𝝆∞
∗ = 𝟎. 𝟓𝟎 𝝆∞

∗ = 𝟎. 𝟐𝟓

𝜔1 - -
Unstable 

(8.08)
Stable 

10.63

𝜔1

2
-

Stable 

(10.64)
Stable 

13.78
-

0
Stable** 

10.94
Stable 

(14.07)
Stable 

18.24
-

29

RTHS Test Matrix
 Influence of numerical dissipation and model-based 

parameters on stability and accuracy of RTHS results

 Some high-frequency oscillations were observed in damper 

displacement

 Numbers in brackets are values of 𝛾Δ𝑡𝐶𝑒𝑞 ෥𝜔 + 𝛽Δ𝑡2𝐾𝑒𝑞 ෥𝜔

෥𝜔 = 0
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Comparison of Selected RTHS: Accuracy

Comparison of story drifts (%)

Accuracy is not influenced by ෥𝜔
and 𝜌∞

∗ , provided stability is 

achieved 



RTHS: Influence of Fixed Number of Iterations

 Numerical simulation of RTHS was performed 

(offline simulation)

 All FB elements were allowed to converge with 

𝐸𝑡𝑜𝑙 = 10−16

 Required 8 iterations for most of the elements

 Measured damper force from the RTHS was 

used 

31



RTHS: Influence of Fixed Number of Iterations

32

෥𝜔 = 0; 𝜌∞
∗ = 0.75
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MCE Level Test Demonstration
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Summary and Conclusions

 Direct integration algorithm

 Reviewed the MKR-𝛼 method

 Influence of model-based 

integration parameters on stability 

and accuracy of RTHS

 Accuracy is not influenced by 

model-based integration 

parameters and numerical 

damping, provided stability is 

achieved

 Controllable numerical energy 

dissipation in MKR-𝛼 method 

makes it well suited for RTHS of 

complex structures

 FE modeling of analytical 

substructure

 Proposed an efficient 

implementation procedure for 

force-based elements for 

application to RTHS

 Assessed the implementation 

using numerical and RTHS 

results

 Proposed implementation 

procedure is well suited for RTHS 

and large-scale numerical 

simulations using explicit 

algorithms
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