Hybrid Simulation: Framework, Hardware & Software Capabilities

Liang Cao, Ph.D NHERI Lehigh Research Scientist

Overall Concept of Real-time Hybrid Simulation (RTHS): Structural System Subject to Predefined Wind Loading

NSF CMMI: Semi-Active Controlled Cladding Panels for Multi-Hazard Resilient Buildings - S. Laflamme (Iowa State), J. Ricles (Lehigh University), S. Quiel (Lehigh University)

Wind Load Determination

Why Real-Time Hybrid Simulation?

Enables cost-effective large-scale dynamic tests

- > Low experimental cost compared to a full shake table test
- Various analytical substructures can be used for a given experimental substructure, enabling extensive and comprehensive experimental studies
- Meets the need of the natural hazards engineering community of providing experimental validation of concepts for natural hazards mitigation
- Accounts for rate-dependency of physical specimens
 - Rate-dependent structures (frictional devices, dampers, baseisolators, tuned mass damper, etc.) can be investigated with RTHS
 - ➔ not possible with conventional, slow hybrid simulation

RTHS: Implementation issues and challenges

Simulation coordinator

- Numerical integration algorithm
 - Accurate
 - Explicit
 - Unconditionally stable Preferred
 - Dissipative

I Fast communication

Analytical substructure

Fast and accurate state determination procedure for complex, nonlinear structures

Experimental substructure

- Large capacity hydraulic system and dynamic actuators required
- Actuator kinematic compensation
- Robust control of dynamic actuators for large-scale structures

- Advanced experimental techniques in NHERI Lehigh EF:
 - <u>Unconditionally stable explicit integration algorithms</u> with minimal overshooting and controlled numerical damping for HS and RTHS

Velocity update: $\dot{X}_{n+1} = \dot{X}_n + \Delta t \alpha_1 \ddot{X}_n$ Displacement update: $X_{n+1} = X_n + \Delta t \dot{X}_n + \Delta t^2 \alpha_2 \ddot{X}_n$ α_1 , α_2 , and α_3 : model-based integration parameters

Weighted equations of motion: $\mathbf{M}\hat{\mathbf{X}}_{n+1} + \mathbf{C}\mathbf{X}_{n+1-\alpha_f} + \mathbf{K}\mathbf{X}_{n+1-\alpha_f} = \mathbf{F}_{n+1-\alpha_f}$

MKR- α : One parameter (ρ_{∞}) family of algorithms

- ρ_∞, Parameter controlling numerical energy dissipation
 - $\triangleright \rho_{\infty} =$ spectral radius when $\Omega = \omega \Delta t \rightarrow \infty$
 - ▶ varies in the range $0 \le \rho_{\infty} \le 1$
 - $\triangleright \rho_{\infty} = 1$: No numerical energy dissipation
 - $\succ \rho_{\infty} = 0$: Asymptotic annihilation

Kolay, C., Ricles, J., Marullo, T., Mahvashmohammadi, A., and R. Sause, (2015) "Implementation and Application of the Unconditionally Stable Explicit Parametrically Dissipative KR-α Method for Real-Time Hybrid Simulation," *Earthquake Engineering and Structural Dynamics*, 44(5), 735-755, <u>https://DOI.org/10.1002/eqe.2484</u>

Kolay, C., and J.M. Ricles (2014). Development of a family of unconditionally stable explicit direct integration algorithms with controllable numerical energy dissipation. *Earthquake Engineering and Structural Dynamics*, 43(9), 1361–1380. <u>http://doi.org/10.1002/eqe.2401</u>

Kolay, C., and J.M. Ricles (2019) "Improved Explicit Integration Algorithms for Structural Dynamic Analysis with Unconditional Stability and Controller Numerical Dissipation," *Journal of Earthquake Engineering*, 23(5), pp 771-792, http://dx.doi.org/10.1080/13632469.2017.1326423.

- Advanced experimental techniques in NHERI Lehigh EF:
 - <u>Unconditionally stable explicit integration algorithms</u> with minimal overshooting and controlled numerical damping for HS and RTHS
 - <u>Explicit force-based nonlinear fiber element</u> for NLTHA, HS and RTHS

Kolay, C. and J.M. Ricles, (2018). Force-Based Frame Element Implementation for Real-Time Hybrid Simulation Using Explicit Direct Integration Algorithms. Journal of Structural Engineering, 144(2) <u>http://dx.doi.org/10.1080/13632469.2017.1326423</u>.

- Advanced experimental techniques in NHERI Lehigh EF:
 - <u>Unconditionally stable explicit integration algorithms</u> with minimal overshooting and controlled numerical damping for HS and RTHS
 - ✓ Explicit force-based nonlinear fiber element for NLTHA, HS and RTHS

- Advanced experimental techniques in NHERI Lehigh EF:
 - <u>Unconditionally stable explicit integration algorithms</u> with minimal overshooting and controlled numerical damping for HS and RTHS
 - <u>Explicit force-based nonlinear fiber element</u> for NLTHA, HS and RTHS
 - Development and implementation of <u>real-time nonlinear model updating</u> for HS and RTHS

- Advanced experimental techniques in NHERI Lehigh EF:
 - <u>Unconditionally stable explicit integration algorithms</u> with minimal overshooting and controlled numerical damping for HS and RTHS
 - <u>Explicit force-based nonlinear fiber element</u> for NLTHA, HS and RTHS
 - Development and implementation of <u>real-time nonlinear model updating</u> for HS and RTHS
 - Development and implementation of <u>3-D kinematic compensation</u> actuator control algorithm

$$(M_i SNxL_{new}, M_i SNyL_{new}) = (-LMa_{inew} sin(\Theta_2 + \phi_i), LMa_{inew} cos(\Theta_2 + \phi_i))$$

$$\Theta_{2} = \arcsin\left[\frac{LMb_{inew}}{yF_{i}/cos\phi_{i}}\sin\Theta_{3}\right]$$
$$\Theta_{3} = \arccos\left[\frac{LMa_{inew}^{2} + LMb_{inew}^{2} - (yF_{i}/cos\phi_{i})^{2}}{2LMa_{inew}LMb_{inew}}\right]$$

 $(SPN^{m}x_{new}, SPN^{m}y_{new}) = (M_{1}SN^{m}x_{new} - \left|\overrightarrow{VM}_{1}\right| cos(\Theta M_{1,0} + d^{m}SPN\Theta), M_{1}SN^{m}y_{new} - \left|\overrightarrow{VM}_{1}\right| sin(\Theta M_{1,0} + d^{m}SPN\Theta))$

3D Multi-directional loading of CLT Shear Wall-Floor Diaphragm-Gravity Load System Subassembly

Mercan, O, Ricles, J.M., Sause, R, and M. Marullo, (2009) "Kinematic Transformations in Planar Multi-directional Pseudo-Dynamic Testing," *Earthquake Engineering and Structural Dynamics*, Vol. 38(9), 1093-1119.

Amer, A., Sause, R., Ricles, J, and T. Marullo, (2020) "Multi-Directional Cyclic Testing of Cross-Laminated Timber Rocking Wall-Floor Diaphragm Sub-Assemblies," *Proceedings of the 17th World Conference on Earthquake Engineering*, September 13-18, Sendai, Japan

- Advanced experimental techniques in NHERI Lehigh EF:
 - <u>Unconditionally stable explicit integration algorithms</u> with minimal overshooting and controlled numerical damping for HS and RTHS
 - <u>Explicit force-based nonlinear fiber element</u> for NLTHA, HS and RTHS
 - Development and implementation of <u>real-time nonlinear model updating</u> for HS and RTHS
 - Development and implementation of <u>3-D kinematic compensation actuator</u> control algorithm
 - Development and implementation of <u>real-time adaptive servo-hydraulic control</u> for delay compensation

Real-time Adaptive Time Series Delay Compensation

Chae, Y., Kazemibidokhti, K., and Ricles, J.M. (2013). "Adaptive Time Series Compensator for Delay Compensation of Servo-hydraulic Actuator Systems for Real-time Hybrid Simulation", *Earthquake Engineering and Structural Dynamics*, DOI: 10.1002/ eqe.2294.

Summary of Advancements in Experimental Methods

3-D large-scale multi-directional RTHS:

- Unconditionally stable explicit integration algorithms
- Explicit force-based nonlinear fiber element
- Real-time nonlinear model updating for HS and RTHS
- ✓ 3-D kinematic compensation actuator control
- Real-time adaptive servo-hydraulic control

Example: Multi-hazard RTHS of a Tall Building

Outrigge

- 40-story (+4 basement) BRBF building in Los Angeles designed by SGH⁽¹⁾ for PEER Tall Building Initiative case studies – BRBFs with Outriggers
- Objectives of study ٠
 - Improve performance using nonlinear fluid viscous dampers with outriggers
 - Assess performance of structure under multi-hazards using RTHS
- Extend MKR- α integration algorithm and ATS actuator control to multi-• hazards
- NL Viscous Dampers W -12.2m-12.2m -9.1m--9.1m--9.1m-Ν WF steel beams 12.'2m Outrigger Outrigger columns 8.2m truss (at W 20th, 30th, 40th stories) 12.2m Box columns Ν BRB chevron WF steel column frame (BRBF) Floor Plan ⁽¹⁾ Moehle et al., PEER 2011/05

Al-Subaihawi, S., Kolay, C., Thomas Marullo, Ricles, J. M. and S. E. Quiel, (2020) "Assessment of Wind-Induced Vibration Mitigation in a Tall Building with Damped Outriggers Using Real-time Hybrid Simulations," Engineering Structures, 205, 110044. DOI:10.1016/j.engstruct.2019.110044 Kolay, C., Al-Subaihawi, S., Thomas Marullo, Ricles, J. M. and S. E. Quiel, (2020) "Multi-Hazard Real-Time Hybrid Simulation of a Tall Building with Damped Outriggers," International Journal of Lifecycle Performance Engineering, 4.1-3, 103-132. DOI: IJLCPE.2020.108937

Online model updating – explicit-based NL Maxwell model •

Multi-Hazard RTHS of Tall Building – EQ & Wind

- Bidirectional EQ ground motions
 - 1989 Loma Prieta EQ Saratoga Aloha Ave Station scaled to MCE (2500 year return period) hazard level
- Bidirectional wind loading
 - Wind speed of 110 mph, 700 MRI
 - Exposure B

Wind Loading Aerodynamic Wind Testing @ FIU WOW

• Aerodynamic wind testing at the NHERI FIU WOW to obtain wind pressure time histories distributed on the building.

Courtesy: Amal Elawady and Arindam Chowdhury, FIU

RTHS Configuration

- Use of:
 - > Explicit MKR- α Integration Algorithm
 - Explicit Force-based Nonlinear Fiber Element Analytical Substructure
 - Adaptive Time Series Compensator for Actuator Control
 - Online Model Updating (OMU) explicit-based NL Maxwell model

MKR- α parameter and ATS coefficients

Natural Hazard	Time Step, ∆t (sec)	$oldsymbol{ ho}_{\infty}$	ATS Coefficients			Commonto
			a_{0k}	a_{1k}	a_{2k}	Comments
Wind	$\frac{6}{1024}$	0.866	Fixed	Adaptive	Fixed	Wind: static component with dynamic gusts - 1 st mode linear response
EQ	$\frac{6}{1024}$	0.50	Adaptive	Adaptive	Adaptive	EQ: Multi-mode non- linear response

RTHS Substructures

Analytical Sub. Key features:

- 1317 Nodes
- 2974 Elements
 - > 2411 Nonlinear Explicit Force-based fiber elements
 - > 11 Nonlinear Explicit Maxwell Elements⁽¹⁾ with real-time model updating (dampers placed in each outrigger at 20th, 30th, & 40th floors)
 - 552 Nonlinear truss elements
- Reduced Order Modeling
- Geometric nonlinearities
- Mass
- Inherent damping of building

Real-time Hybrid Simulation with Online Model Updating – Unscented Kalman Filter (UKF)

- <u>Real-time Model Updating</u>
 - > 40th story @ S-E corner: damper modeled physically
 - Remaining 11 dampers at 20th, 30th, and 40th stories modeled numerically with real-time model updating
 - Use real-time model updating via <u>Unscented Kalman</u> <u>Filter (UFK)</u> to numerically model the 11 dampers
 - Development of explicit, non-iterative Nonlinear Maxwell Damper Model for real-time hybrid simulation
 - Development of methodology to tune and implement the UKF for real-time identification of nonlinear viscous dampers

Real-time Hybrid Simulation with Online Model Updating – Unscented Kalman Filter (UKF)

3-D Real-time Hybrid Simulation 1989 Loma Prieta EQ Bidirectional Ground Motions Scaled to MCE

Motions scaled by factor of 5 in animation

Al-Subaihawi, S. (2020). *Real-time Hybrid Simulation of Complex Structural Systems Subject to Multi-Hazards*. PhD Dissertation, CEE Dept., Lehigh University.

3-D Real-time Hybrid Simulation 110 mph, 700 MRI Wind Storm (EW Windward Direction)

Al-Subaihawi, S. (2020). *Real-time Hybrid Simulation of Complex Structural Systems Subject to Multi-Hazards*. PhD Dissertation, CEE Dept., Lehigh University.

3-D RTHS Results: BRB Maximum Ductility 1989 Loma Prieta EQ Scaled to MCE

BRB Maximum Ductility Demand $(\Delta_{b}^{max}/\Delta_{y})$						
Story	No Dampers		With Dampers			
	EW	NS	EW	NS		
1	3.2	3.0	3.2	2.1		

Dampers added to outriggers at 20th, 30th, and 40th stories:

 BRB ductility demand: Minimal reduction in EW, 30% reduction in NS Note: Outrigger frames are in NS direction

3-D RTHS Results: Roof RMS Lateral Accelerations East to West 110 mph, 700 Year MRI Wind

RMS Roof Accelerations (mG

Floor	No Dampers		With Dampers		
	EW	NS	EW	NS	
40	7.0	31.5	6.9	16.2	

Peak Roof Accelerations (mG)

Floor	No Da	ampers	With Dampers		
	EW	NS	EW	NS	
40	28.8	90.3	25.8	59.0	

Dampers added to outriggers at 20th, 30th, and 40th stories:

- RMS Acceleration: 2% reduction in EW, 49% reduction in NS
- Peak Acceleration: 10% reduction in EW, 35% reduction in NS

Note: Outrigger frames are in NS direction