Real-time Hybrid Simulation (RTHS): Background, Theory, and Implementation

James Ricles NHERI Lehigh Director

Outline of Presentation

- RTHS Background
- RTHS Developments/Implementation at NHERI Lehigh
- Multi-hazard Example Application

RTHS Background

- Combines experimental and analytical substructures
 - >Experimental substructure(s)
 - Not well understood and modeled analytically
 - Full scale component can be easily accommodated
 - Rate dependent devices (e.g., dampers, base-isolators) can be tested
 - Analytical substructure(s)
 - Well understood and modeled numerically
 - Various substructures possible for a given expt. substructure
 - Damage can accumulate (not a problem) provided it can be modeled

Overall Concept of Real-time Hybrid Simulation: Structural System Subject to Multi-Natural Hazards

NSF CMMI: Semi-Active Controlled Cladding Panels for Multi-Hazard Resilient Buildings - S. Laflamme (Iowa State), J. Ricles (Lehigh University), S. Quiel (Lehigh University)

REAL-TIME MULTI-DIRECTIONAL SIMULATIO

Wind Load Determination

Why Real-Time Hybrid Simulation?

Enables cost-effective large-scale dynamic tests

- Low experimental cost compared to a full shake table test
- Various analytical substructures can be used for a given experimental substructure, enabling extensive and comprehensive experimental studies
- Meets the need of the natural hazards engineering community of providing experimental validation of concepts for natural hazards mitigation
- Accounts for rate-dependency of physical specimens
 - Rate-dependent structures (frictional devices, dampers, baseisolators, tuned mass damper, etc.) can be investigated with RTHS

➔ not possible with conventional, slow hybrid simulation

RTHS: Implementation issues and challenges

Simulation coordinator

- Numerical integration algorithm
 - Accurate
 - Explicit
 - Unconditionally stable Preferred
 - Dissipative

Fast communication

Analytical substructure

Fast and accurate state determination procedure for complex structures

Experimental substructure

- Large capacity hydraulic system and dynamic actuators required
- Actuator kinematic compensation
- Robust control of dynamic actuators for large-scale structures

RTHS: Implementation issues and challenges

- Numerical integration algorithm
 - Accurate
 - Explicit
 - Unconditionally stable
 - Dissipative
- Fast communication

NHERI Lehigh Solutions

- Various explicit model-based algorithms
- RTMD real-time integrated control architecture

Model-based explicit algorithms for RTHS

NHERI Lehigh Solutions to RTHS Challenges

Kolay, C., & Ricles, J. M. (2015). Assessment of explicit and semi-explicit classes of model-based algorithms for direct integration in structural dynamics. *International Journal for Numerical Methods in Engineering*. doi:10.1002/nme.5153

Numerical Integration Algorithms

Explicit Modified KR- α (MKR- α) Method

- Explicit Integration of Equations of Motion
- Unconditionally Stable
- One parameter (ho_{∞}) algorithm
- Controlled Numerical Damping eliminate spurious high frequency noise

 α₁, α₂, and α₃: model-base

 $\mathbf{X}_{n+1} = \mathbf{X}_n + \Delta t \dot{\mathbf{X}}_n + \Delta t^2 \boldsymbol{\alpha}_2 \ddot{\mathbf{X}}_n$

Velocity update:

$$\dot{\mathbf{X}}_{n+1} = \dot{\mathbf{X}}_n + \Delta t \boldsymbol{\alpha}_1 \ddot{\mathbf{X}}_n$$

Displacement update:

Weighted equations of motion: $\mathbf{M}\hat{\mathbf{X}}_{n+1} + \mathbf{C}\mathbf{X}_{n+1-\alpha_f} + \mathbf{K}\mathbf{X}_{n+1-\alpha_f} = \mathbf{F}_{n+1-\alpha_f}$

Kolay, C., and J.M. Ricles (2014). Development of a family of unconditionally stable explicit direct integration algorithms with controllable numerical energy dissipation. *Earthquake Engineering and Structural Dynamics*, 43(9), 1361–1380. <u>http://doi.org/10.1002/eqe.2401</u>

Kolay, C., and J.M. Ricles (2017) "Improved Explicit Integration Algorithms for Structural Dynamic Analysis with Unconditional Stability and Controller Numerical Dissipation," *Journal of Earthquake Engineering*, <u>http://dx.doi.org/10.1080/13632469.2017.1326423</u>.

 α_1 , α_2 , and α_3 : model-based integration parameters

KR-*α* **Method: Implementation for RTHS**

Kolay, C., Ricles, J., Marullo, T., Mahvashmohammadi, A., and Sause, R. (2015). Implementation and application of the unconditionally stable explicit parametrically dissipative KR- α method for real-time hybrid simulation. *Earthquake Engineering & Structural Dynamics*. 44, 735-755, doi:10.1002/eqe.2484.

RTMD Real-time Integrated Control Architecture

NHERI Lehigh Solutions to RTHS Challenges

10 Gbos

- Multiple real-time • workstations with real-time communication (SCRAMNet)
- Synchronized control commands with simulation data, DAQ, and camera triggers to enable real time simulations and telepresence

Real-Time

Specimen

RTHS: Implementation issues and challenges

Analytical substructure

• Fast and accurate state determination procedure

NHERI Lehigh Solutions

- Explicit force-based fiber elements
- HybridFEM

Fiber Element State Determination

Section deformations

Nodal (elem) forces

Nodal (elem) deformations

Section forces

 D_{2}

 v_2

 v_3^T

FE Modeling of Analytical Substructure

Displacement-based fiber elements

- Curvature varies linearly
 - Requires many elements per structural member to model nonlinear response
 - Increases number of DOFs
- □ State determination is straight forward

Fiber element

Force-based fiber elements

- Equilibrium is strictly enforced
 - Material nonlinearity can be modeled using a single element per structural member
 - ✓ Reduces number of DOFs

Requires iterations at the element level

Jeopardizes explicit integration

Explicit-formulated Force-Based Fiber Element

- Used with explicit integration algorithm
- Material nonlinearity
- Reduced DOFs in system modeling
- Fixed number of iterations during state determination with carryover and correction of unbalanced section forces in next time step

Fiber element

Kolay, C. and J.M. Ricles, (2018). Force-Based Frame Element Implementation for Real-Time Hybrid Simulation Using Explicit Direct Integration Algorithms. *Journal of Structural Engineering*, <u>http://dx.doi.org/10.1080/13632469.2017.1326423</u>.

RTHS of RC Structure: Fiber Element Real-time State-Determination

17

Explicit-formulated Force-Based Fiber Element

Results

Energy Increment (EI) Error

Moment Curvature Response – 1st story RC column (CO: Carry over unbalanced section forces)

> Note: Reference = Newmark Constant Acceleration Method

Kolay, C. and J.M. Ricles, (2018). Force-Based Frame Element Implementation for Real-Time Hybrid Simulation Using Explicit Direct Integration Algorithms. *Journal of Structural Engineering*, <u>http://dx.doi.org/10.1080/13632469.2017.1326423</u>.

Lehigh HybridFEM NHERI Lehigh Solutions to RTHS Challenges

- MATLAB and SIMULINK based computational modeling and simulation coordinator software for dynamic time history analysis and real-time hybrid simulation of inelastic-framed structures
- Run Modes
 - MATLAB script for numerical simulation
 - SIMULINK modeling for Real-Time Hybrid simulation with experimental elements via xPCs, and hydraulics-off for training and validation of user algorithms.
- User's Manual for training

Karavasilis, T. L., Seo, C.-Y., & Ricles, J. M. (2012). *HybridFEM: A program for dynamic time history analysis and real-time hybrid simulation* (ATLSS Report). *ATLSS Report* (Vol. 08–09). Bethlehem, PA.

Lehigh HybridFEM

Configuration Options:

- Coordinate system of nodes
- Boundary, constraint and restraint conditions
- Elements
 - Elastic beam-column
 - Elastic spring
 - Inelastic beam-column stress resultant element
 - Non-linear spring •
 - Non-linear truss element
 - Displacement-based NL beam-column fiber element Steel
 - Force-based NL beam-column fiber element
 - Zero-length
 - 2D NL planar panel zone
 - Elastic beam-column element with geometric stiffness
- Geometric nonlinearities ٠
- Steel wide flange sections (link to AISC shapes Database) ٠
- **Reinforced concrete sections** ٠
- Structural mass & inherent damping properties ٠
- Adaptable integration methods

- **Materials**
 - Elastic
 - Bilinear elasto-plastic
 - Hysteretic •
 - **Bouc-Wen**
 - Trilinear
 - Stiffness degrading
 - Concrete

RTHS: Implementation issues and challenges

Experimental substructure

- Large capacity hydraulic system and dynamic actuators required
- Actuator kinematic compensation
- Robust control of dynamic actuators for large-scale structures

- Large hydraulic power supply system
- 5 large capacity dynamic actuators
- Development of actuator kinematic compensation
- Servo hydraulic actuator control: Adaptive Time Series Compensator (ATS)

Large Capacity Hydraulic System and Dynamic Actuators

NHERI Lehigh Solutions to RTHS Challenges

Lehigh has unique equipment with large hydraulic power, facilitating largescale real-time hybrid simulation

Maximum load capacity 2 actuators: 517 kips (2,300kN) 3 actuators: 382 kips (1,700kN)

Stroke +/- 20 in (+/- 500mm)

Maximum velocity 45 in/s (1,140mm/sec) for 382 kip actuators 33 in/s (840mm/sec) for 517 kip actuators

Large Capacity Hydraulic System and Dynamic Actuators

NHERI Lehigh Solutions to RTHS Challenges

Lehigh has unique equipment with large hydraulic power, facilitating largescale real-time hybrid simulation

- Enables a large-scale RTHS of a structure under strong ground motions (i.e., Kobe earthquake, Japan)
- Collapse simulation of a building structure was conducted under extreme earthquake ground motions (beyond MCE level)

Actuator Kinematic Compensation

- Develop kinematic compensation scheme and implementation for RTHS (Mercan et al. 2009)
 - Kinematic correction of command displacements for multi-directional actuator motions
 - Robust, avoiding accumulation of error over multiple time steps; suited for RTHS
 - Exact solution for planar motions

$$(M_i SNxL_{new}, M_i SNyL_{new}) = (-LMa_{inew} sin(\Theta_2 + \phi_i), LMa_{inew} cos(\Theta_2 + \phi_i))$$

$$\Theta_{2} = \arcsin\left[\frac{LMb_{inew}}{yF_{i}/cos\phi_{i}}\sin\Theta_{3}\right]$$

$$\Theta_{3} = \arccos\left[\frac{LMa_{inew}^{2} + LMb_{inew}^{2} - (yF_{i}/cos\phi_{i})^{2}}{2LMa_{inew}LMb_{inew}}\right]$$

$$(SPN^{m}x_{new}, SPN^{m}y_{new}) = (M_{1}SN^{m}x_{new} - |\overrightarrow{VM}_{1}|cos(\Theta M_{1,0} + d^{m}SPN\Theta), M_{1}SN^{m}y_{new} - |\overrightarrow{VM}_{1}|sin(\Theta M_{1,0} + d^{m}SPN\Theta))$$

Mercan, O, Ricles, J.M., Sause, R, and M. Marullo, "Kinematic Transformations in Planar Multi-directional Pseudo-Dynamic Testing," *Earthquake Engineering and Structural Dynamics*, Vol. 38(9), pp. 1093-1119, 2009.

Multi-directional Real-time Hybrid Simulation

Servo Hydraulic Actuator Control

Sources of Nonlinearity in Real-Time Hybrid Simulation

- Nonlinear servo-valve dynamics
- Nonlinear actuator fluid dynamics
- Test specimen material and geometric nonlinearities
- Slop, misalignment, deformations in test setup

Effect of time delay on real-time hybrid simulation Can lead to variable amplitude error and time ccurate structural response

- g force adds energy into the system (negative damping)

av effect in real-time fight simulation

actuator systems for real-time hybrid simulation", Earthquake Engineering and Structural Dynamics, DOI: 10.1002/ eqe.2294.

Adaptive Time Series (ATS) Compensator

Unique features of ATS compensator

- No user-defined adaptive gains → applicable for large-scale structures susceptible to damage (i.e., concrete structures)
- Negates both variable time delay and variable amplitude error response
- Time delay and amplitude response factor can be easily estimated from the identified values of the coefficients
- Use specimen feedback

Amplitude error: $A = \frac{1}{a_{0k}}$ Time delay: $t = \frac{a_{1k}}{a_{0k}}$

Adaptive Time Series (ATS) Compensator - Performance of ATS compensator -

Predefined EQ displacement test (maximum amplitude=40mm)

Adaptive Time Series (ATS) Compensator - Performance of ATS compensator -

Predefined EQ displacement test (maximum amplitude=40mm)

Adaptive Time Series (ATS) Compensator - Performance of ATS compensator -

Predefined EQ displacement test (maximum amplitude=40mm)

Applications of RTHS to Multi-Hazards

32

RTHS of a Tall Building

- 40-story (+4 basement) BRBF building in Los Angeles designed by SGH for PEER Tall Building Initiative case studies
- Objectives of study
 - Investigate multi-hazard performance of building outfitted with nonlinear fluid viscous dampers placed in outriggers
 - Assess performance using RTHS
- Extend MKR- $\!\alpha$ integration algorithm and ATS actuator control to wind natural hazard

courtesy of Dutta and Hamburger (2010)

Ref.: Moehle et al., PEER 2011/05

3-D view of the building. Image courtesy of Dutta and Hamburger (2010)

Nonlinear Viscous Dampers

Characterization testing

RTHS Configuration

• Use of:

- > Explicit MKR- α Integration Algorithm
- Explicit Force-based Fiber Element Analytical Substructure
- Adaptive Time Series Compensator for Actuator Control

MKR- α parameter and ATS coefficients

Natural Hazard	Time Step, ∆t (sec)	$oldsymbol{ ho}_\infty$	ATS Coefficients			Commonto
			a_{0k}	a_{1k}	a_{2k}	Comments
Wind	$\frac{6}{1024}$	0.866	Fixed	Adaptive	Fixed	Wind: static component with dynamic gusts - 1 st mode linear response
EQ	$\frac{6}{1024}$	0.50	Adaptive	Adaptive	Adaptive	EQ: Multi-mode non- linear response

RTHS Configuration

Wind load:

- Tokyo Polytechnic University Wind Tunnel Test database
- Normalized pressure coefficient time histories are ٠ converted to full scale forces corresponding to Exposure B and wind speed of 110 mph, 700 year MRI

EQ load:

1989 Loma Prieta EQ – Saratoga Aloha Ave Station ٠ scaled to SLE, DBE, and MCE (43, 475, 2475 year return periods, respectively) hazard level

RTHS Test Structure

RTHS Substructures

Analytical Substructure

Experimental Substructures

Analytical Substructure Key features:

REAL-TIME MULTI-DIRECTIONAL SIMULATIO

- P-∆ effects included
- 780 Nodes
- 996 Elements
- 1590 DOFs

LSS

- Mass
- Inherent damping of building

Demonstration of a Typical Wind RTHS

Demonstration of a Typical EQ RTHS

REAL-TIME MULTI-DIRECTIONAL SIMULATIO

RTHS Results: Damper Force-Displacement Response, 700 Year MRI Wind

Dampers experienced low velocity, with dynamic gust
 Dampers performed similar to linear viscous dampers

RTHS Results: Damper Force-Displacement, Loma Prieta EQ

- Dampers developed appreciable dynamic response
 - > Dampers performed as nonlinear dampers, where force is capped

Actuator Control: Typical Wind RTHS

Actuator Control: Typical EQ RTHS

RTHS Analytical Substructure Buckling Restrained Brace Response

Current Research: Multi-Natural Hazard 3-D Hybrid Simulation

Natural Hazards:

- Earthquake
- Wind (FIU WOW)

Analytical Substructure

- 2920 elements
- 4069 degrees of freedom

Thank you

