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RTHS Background

A Combines experimental and analytical
substructures

U Experimental substructure(s)

A Not well understood and modeled analytically
A Full scale component can be easily accommodated
A Rate dependent devices (e.g., dampers, base-isolators)
can be tested
U Analytical substructure(s)

A Well understood and modeled numerically

A Various substructures possible for a given expt.
substructure

A Damage can accumulate (not a problem) provided it
can be modeled




Overall Concept of Real-time Hybrid Simulation:

Structural System Subject to Multi-Natural Hazards

NSF CMMI: Semi-Active Controlled Cladding Panels for Multi-Hazard Resilient Buildings
- S. Laflamme (lowa State), J. Ricles (Lehigh University), S. Quiel (Lehigh University)
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Why Real-Time Hybrid Simulation?

A Enables cost-effective large-scale dynamic tests

U Low experimental cost compared to a full shake table test

U Various analytical substructures can be used for a given _
experimental substructure, enabling extensive and comprehensive
experimental studies

U Meets the need of the natural hazards engineering community of
providing experimental validation of concepts for natural hazards
mitigation

A Accounts for rate-dependency of physical
specimens

U Rate-dependent structures (frictional devices, dampers, base-
Isolators, tuned mass damper, etc.) can be investigated with RTHS

C not possible with conventional, slow hybrid simulation




RTHS: Implementation issues and challenges

Simulation coordinator

- C Numerical integration algorithm Experimental substructure |
A Accurate

. C Large capacity hydraulic
Preferred system and dynamic actuators
required

Aol QUG C Actuator kinematic
compensation
Analytical substructure C Robust control of dynamic

actuators for large-scale
structures




RTHS: Implementation issues and challenges

Simulation coordinator

C Numerical integration algorithm
A Accurate
A Explicit
A Unconditionally stable
A Dissipative

" C Fast communication

NHERI Lehigh
Solutions

A Various explicit model-based algorithms

A RTMD real-time integrated control architecture




Model-based explicit algorithms for RTHS

NHERI Lehigh Solutions to RTHS Challenges

Model-Based Algorithms

SemiExplicit- (SE- ) Method Explicit- (E-») Method

Single-Parameter SemiEXxplicit - Kolay-Ricles Modified Kolay -Ricles
(SSE ) Method (KR- ) Method (MKR - ) Method

(Kolay & Ricles, 2014) (Kolay & Ricles, 2017)

iChen—RicIes ‘CRI Aliorithm‘

Kolay, C., & Ricles, J. M. (2015). Assessment of explicit and semi-explicit classes of model-based algorithms for direct integration in
structural dynamics. International Journal for Numerical Methods in Engineering. doi:10.1002/nme.5153




Numerical Integration Algorithms

Explicit Modified KR- (MKR- ) Method

A Explicit Integration of Equations of Motion

A Unconditionally Stable

A One parameter (* ) algorithm

A Controlled Numerical Damping i eliminate spurious high frequency
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Kolay, C., and J.M. Ricles (2014). Development of a family of unconditionally stable explicit direct integration algorithms with

controllable numerical energy dissipation. Earthquake Engineering and Structural Dynamics, 43(9), 136171 1380.
http://doi.org/10.1002/eqge.2401

Kolay, C., and J.M. Ricles (2017)A | mpr oved Expl icit I ntegration Algorithms for 151
Stability and Cont r ol Joermal oNGantheuake EngiheeriDg, 18tps/dx.¢oiart/10.1080/13632469.2017.1326423.
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KR-» Method: Implementation for RTHS
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Kolay, C., Ricles, J., Marullo, T., Mahvashmohammadi, A., and Sause, R.. (2015). Implementation and application of the unconditionally
stable explicit parametrically dissipative KR4{ method for real-time hybrid simulation. Earthquake Engineering & Structural Dynamics.
44, 735-755, doi:10.1002/eqe.2484.




