NHERI Computational Modeling and Simulation Center

Lehigh EF Researcher’s Workshop
December 5-6, 2016
NHERI SimCenter Vision

“Transforming the nation’s ability to understand and mitigate adverse effects of natural hazards on the built environment through computational simulation”

Grounded in the present
Five year focus
Ten year vision
SimCenter Mission

Pivot to a comprehensive, open source, cloud-based, HPC framework or simulation “ecosystem” that:

✓ is modern, extensible, scalable, secure and robust,

✓ harnesses machine learning, artificial intelligence, expert systems, self-assembling knowledge bases to help model, validate and build trust in numerical simulations,

✓ quantifies the sensitivity of performance to various uncertainties,

✓ is performance oriented and data-driven, and

✓ characterizes performance appropriately for different stakeholders.
SimCenter Broader Goals

- Treats all natural hazards equally.
- Considers models at all scales.
- Remembers cities are not just structures, includes infrastructure, lifeline networks and social services.
- Integrates seamlessly with other NHERI components to ensure a functional and cohesive national infrastructure.
- Supports decision-making at all levels.
Capable Leadership Team

Steve Mahin
UC Berkeley

Ahsan Kareem
Notre Dame

Laura Lowes
Washington

Greg Deierlein
Stanford

Sanjay Govindjee
UC Berkeley

Camille Crittenden
UC Berkeley

Frank McKenna
UC Berkeley

Matt Schoettler
UC Berkeley

Plus nearly 25 experts in engineering, urban planning, social science and computer and information science
Tackling the “Grand” Challenges posed by a Nation at Risk from Natural Hazards
Builds upon a solid performance-based, risk informed methodology.

Extension to multiple hazards, and portfolios of different kinds of structures and systems, and optimization of structural characteristics to improve performance.

Probabilistic Assessment of:
- Cost of repair and loss of function
- Downtime
- Casualties
- Embodied energy

\[\lambda(DV > dV) = \int \int \int G(dm | edp) dG(dm | im) dG(edp | im) \]
Our plan: Transitioning from PCs to the cloud

Current software is often good, but:
• Regular software updating needed
• Unable to scale to HPC,
• Difficult to interact with and move data from one app to another.

• Move to cloud-based HPC environment
• Provide integrated “plug and play” capability to link multiple software apps together into workflows
Application of Applications Framework
Application of Applications Framework

Xinzheng Lu @ Tsinghua University
Trustworthy Simulations

Concrete Column Blind Prediction Contest 2010

41 expert teams participated

PEER-NEES Blind Analysis Contest

Full-scale 1D tests of circular column - Jose Restrepo, PI (PEER, Caltrans, UNR, FHWA, NEES@UCSD, NEEScomm & NSF)
Enabling complex workflows

- Ground Motion Workflow
- Seismic Response Simulation Workflow
- Seismic Loss Simulation Workflow
- Tsunami/Coastal Inundation Generator Workflow
- Tsunami / Coastal Inundation Response Simulation Workflow
- Tsunami / Coastal Inundation Loss Simulation Workflow
- Wind Effects Workflow
- Wind Response Simulation Workflow
- Wind Loss Simulation Workflow
Enabling complex workflows

Scenario Manager

- Ground Motion Workflow
- Seismic Response Simulation Workflow
- Seismic Loss Simulation Workflow
- Tsunami / Coastal Inundation Generator Workflow
- Tsunami / Coastal Inundation Response Simulation Workflow
- Tsunami / Coastal Inundation Loss Simulation Workflow
- Wind Effects Workflow
- Wind Response Simulation Workflow
- Wind Loss Simulation Workflow
If you can do this for one facility

X.Z. Lu

Portfolio and community simulation models

Lifeline, supply chain and service networks
Local and Regional Government Planning Development, Policies & Programs

(Source: Bay Conservation and Development Commission, 2009)

Decision Support - UrbanSim
SimCenter Framework for Building Workflow Applications

Each component is a software application: it does something and has clearly defined interfaces (input and output APIs).

We will use Scientific Workflow Management Software to schedule components & manage the passing of data between the components. The software we will use is Pegasus.

Our goal is to define the interfaces so existing and future applications of the users choice can be used.
Facilitating complex regional-scale workflows
High profile early deliverables

Time needed to get the framework “backend” developed

Year 1 Highlights

- **App 1**: Integrated performance-based engineering workflow application
- **App 2**: Integrated uncertainty quantification workflow
- Educational apps illustrating sensitivity of dynamic response to excitation and structure characteristics.
- Kick start education activities, including programming boot camp and (M)OOCs (modeling best practices)
- Development and assessment of framework building blocks (metadata, ontologies, APIs, wrappers, user interfaces, etc.)
To Achieve Our Broad Vision for the SimCenter

We need your advice, help and collaboration, so we can effectively address community needs.

Our framework is a skeleton, and needs users to provide it with the data necessary to make it useful.

We are happy to work with researchers and other NHERI Components in developing proposals to use our framework and exploit capabilities of HPC.
Thanks!

Questions?

• For more information contact:
 Stephen Mahin
 mahin@berkeley.edu
 510-693-6972