NHERI Lehigh Facility Project Portfolio

James Ricles NHERI Lehigh EF

Muhannad Suleiman ATLSS Faculty

NHERI Lehigh EF Testing Capabilities for Natural Hazards Engineering Research

- Large-Scale Hybrid Simulation
- Large-Scale Real-time Hybrid Simulation
- Large-Scale Real-time Hybrid Simulation with Multiple Experimental Substructures
- Geographically Distributed Hybrid Simulation
- Geographically Distributed Realtime Hybrid Simulation
- Predefined load or displacements (Quasi-static testing or characterization testing)
- Dynamic testing

Multi-directional Dynamic Testing of Pipe Couplers

Example Project & Testing Types

Test Specimen	Mode of Testing
R/C bridge-soil-foundation	Distributed hybrid simulations
Building with piping system	Multi-directional real-time hybrid simulations
Self-centering beam-to-column moment connections	Characterization tests
Self-centering frame systems	Characterization, hybrid simulations
R/C bridge with MR dampers	Real-time hybrid simulations
Passive and semi-active dampers	Characterization, hybrid and real-time hybrid simulations
Steel frame building with MR dampers	Real-time hybrid simulations with single and multiple experimental substructures, real-time distributed hybrid simulations
Tsunami-driven debris	Dynamic impact loading
Post-tensioned coupled shear wall systems	Characterization testing, multi-mode dynamic testing
Laterally and axially loaded SSI pile tests	Characterization testing, quasi-static testing

DESI

Pre-NEESR MISST: Multi-Site Soil-Structure-Foundation Interaction EQ Simulation Test – UIUC, RPI, Lehigh

Distributed Hybrid Simulation Test Setup

Multi-directional Large-Scale Real-time Hybrid Simulation of 3-story Building with Piping System – Lehigh

Objectives

- Evaluate seismic performance of Victaulic grooved couplers for building piping systems
- Evaluate seismic performance of alternative pipe bracing details

Grooved coupler

Rigid bracing

Flexible bracing

Multi-directional Large-Scale Real-time Hybrid Simulation of 3-story Building with Piping System – Lehigh

Multi-directional Large-Scale Real-time Hybrid Simulation of 3-story Building with Piping System – Lehigh RTHS: 1994 Northridge EQ, Canogo Park (MCE)

NEESR-SG Self Centering Damage-Free Seismic Resistant Steel Frame Systems – Princeton, Purdue, Lehigh, MCEER

Large-Scale Hybrid Simulation

6-story : 6 bays @ 30 ft = 180 ft

Plan of Prototype Building

Schematic of SC-MRF Exper. Substructure (Diaphragm and Gravity Systems Analytically Defined)

NEESR-SG Self Centering Damage-Free Seismic Resistant Steel Frame Systems – MCE (2500 yr Return Period EQ) Hybrid Simulation Results

MCE (2500 yr Return Period EQ) Hybrid Simulation Results

REAL-TIME MULTI-DIRECTIONAL SIMULATION

VERSITY.

T/LSS

UNI

NEESR-SG Self Centering Damage-Free Seismic Resistant Steel Frame Systems - Princeton, Purdue, Lehigh, MCEER

Large-Scale Hybrid Simulations

6-story : 6 bays @ 30 ft = 180 ft

SC-CBF Exper. Substructure (Diaphragm and Gravity Systems Analytically Defined)

Plan of Prototype Building

1995 Takitori, Japan EQ (μ_{MCE} + 3 σ) Simulation Results

Fri Feb.5,2010 09:36:55

Development Of Advanced Servo-Hydraulic Control and Test Bed For Real-Time Testing Of Damped Structures Subjected To Earthquakes - Lehigh

Real-time Hybrid Simulation

REAL-TIME MULTI-DIRECTIONAL SIMULATION

Full-Scale Nonlinear Viscous Dampers Characterization testing

NEESR-CR: Performance-Based Design for Cost-Effective Seismic Hazard Mitigation in New Buildings Using Supplemental Passive Damper Systems

- Cal St. Pomona, Cal St. Northridge, Lehigh

6-story : 6 bays @ 30 ft = 180 ft

Plan of Prototype Building

NEESR-CR: Performance-Based Design for Cost-Effective Seismic Hazard Mitigation in New Buildings Using Supplemental Passive Damper Systems

Real-time Hybrid Simulation – MRF, Gravity Frames Anl Sub

RTHS Phase-2: MCE level 1994 Northridge Earthquake RRS318 component Real-time Hybrid Simulation: MRF + Braced Frame Exp Sub.

NEESR-SG Performance-Based Design and Real-time Large-scale Testing to Enable Implementation of Advanced Damping Systems – Purdue, UIUC, CUNY, UConn, Lehigh

Real-time Hybrid Simulation

6-story : 6 bays @ 30 ft = 180 ft

Plan of Prototype Building

NEESR-SG PBD and Real-time Large-scale Testing to Enable Implementation of Advanced Damping Systems – Purdue, UIUC, CUNY, UConn, Lehigh RTHS: 1994 Northridge EQ (0.80*DBE), Semi-active MR

Experimental Substructure – CBF with MR Dampers

NEESR-CR Impact Forces from Tsunami-driven Debris Dynamic Impact Loading – Univ Hawaii, Oregon St., Lehigh Dynamic Impact Loading

Test Setup Cargo Shipping Container Debris

High Speed Video of Impact of Cargo Shipping Container with Structure

NEESR-CR Post-Tensioned Coupled Shear Wall Systems – Notre Dame, University of Texas @ Tyler Mixed Mode Hybrid Simulation Testing

Joint Strains Measured by DIC System (Pakzad)

NEES@Lehigh Coupled Shear Wall Test Specimen with Multi-Directional Loading (Upper 5 floors analytically modeled)

Digital Imaging Correlation System: reinforced concrete coupled-shear wall test specimen measured pier vertical displacements (courtesy M. McGinnis)

NEESR-CR: Inertial Force Limiting Floor Anchorage Systems for Seismic-Resistant Building Structures – Univ. Arizona, UCSD, Lehigh

Cyclic Quasi Static and Dynamic Load Testing Experimental Setup Up

Friction Device

Floor Anchorage Hysteretic Response

NSF-CMMI: Enhancement of Vertical Element for Foundation Supported by Ureolytic Carbonate Precipitation Lehigh, Arizona State Vertical Tests on Biomodified Soil-Pervious Pile Systems

NSF-CMMI: Enhancement of Vertical Element for Foundation **Supported by Ureolytic Carbonate Precipitation** Lehigh, Arizona State Vertical Tests on Biomodified Soil-Pervious Pile Systems

NSF-CMMI: SSI of Active and Passive Laterally Loaded Piles – Lehigh, Lafayette College Static Lateral Load Pile Tests

NSF-CMMI: SSI of Active and Passive Laterally Loaded Piles – Lehigh, Lafayette College

Static Lateral Load Pile Tests

NSF-CMMI: SSI of Active and Passive Laterally Loaded Piles – Lehigh, Lafayette College Static Lateral Load Pile Tests

NSF-CMMI: SSI of Active and Passive Laterally Loaded Piles – Lehigh, Lafayette College

Static Lateral Load Pile Tests

Lateral displacement (inch)

Lateral displacement (in.)

NSF-CMMI: SSI of Active and Passive Laterally Loaded Piles – Lehigh, Lafayette College Static Lateral Load Pile Tests

LSS

NSF-CMMI: SSI of Active and Passive Laterally Loaded Piles – Lehigh, Lafayette College Static Lateral Load Pile Tests

Thank You

