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NHERI Lehigh EF Experimental Protocols

Real-time Integrated Control System
Configured with experimental protocol required by user to

perform test
Large-Scale Hybrid Simulation
Large-Scale Real-time Hybrid Simulation

https://lehigh.designsafe-ci.org/protocols/experimental-protocol/

Large-Scale Real-time Hybrid Simulation with Multiple Experimental

Substructures
Geographically Distributed Hybrid Simulation

Geographically Distributed Real-time Hybrid Simulation
Predefined load or displacements (Quasi-static testing or characterization

testing)
Dynamic testing

Testing algorithms reside on an RTMDxPC

and run in real time
Experiments can be run in true real-time (real-time
hybrid simulation, real-time distributed hybrid
simulation, dynamic testing, characterization testing).
Experiments can be run at an expanded time scale
(hybrid simulation, distributed hybrid simulation,
guasi-static testing).

Distributed hybrid simulation via:
OpenFresco

Simcor
Custom software

Flexible-designed system

Real-Time

Software and middleware packages developed by users or NHERI CI can be

plugged in and utilized for testing
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NHERI Lehigh EF Experimental Protocols

* Real-time Hybrid Simulation

* Robust integration algorithms: Explicit MKR-a Integration Algorithm - Explicit
unconditionally stable integration algorithm with controlled numerical energy
dissipation and controlled overshoot (Kolay and Ricles, 2014, 2017).

« Adaptive actuator control: Adaptive Time Series (ATS) Compensator (Chae
et al. 2013; Al-Subaihawi 2021)

* Multi-directional actuator control: Multi-directional Kinematic Compensation
(Mercan et al. 2009)

« Explicit-formulated computational modeling element (Kolay et al. 2018)

Kolay, C., & Ricles, J. (2014). “Development of a family of unconditionally stable explicit direct integration algorithms with controllable numerical
energy dissipation.” Earthquake Engineering & Structural Dynamics, 43(9), 1361-1380. DOI:10.1002/ege.2401

Kolay, C., and J.M. Ricles (2017). “Improved Explicit Integration Algorithms for Structural Dynamic Analysis with Unconditional Stability and
Controllable Numerical Dissipation,” Journal of Earthquake Engineering, http://dx.doi.org/10.1080/13632469.2017.1326423

Chae, Y., Kazemibidokhti, K., and Ricles, J.M. (2013). “Adaptive time series compensator for delay compensation of servo-hydraulic actuator
systems for real-time hybrid simulation.” Earthquake Engineering and Structural Dynamics, 42(11), 1697-1715, DOI: 10.1002/ eqe.2294.

Al-Subaihawi, Safwan. (2021) “Real-time hybrid simulation of large structural systems under multi-natural hazards." PhD dissertation, Lehigh
University, Bethlehem, PA.

Mercan, O, Ricles, J.M., Sause, R, and M. Marullo, (2009). “Kinematic Transformations in Multi-directional Pseudo-Dynamic Testing,”
Earthquake Engineering and Structural Dynamics, Vol. 38(9), pp. 1093-1119.

Kolay, C. and J.M. Ricles, (2018). Force-Based Frame Element Implementation for Real-Time Hybrid Simulation Using Explicit Direct Integration
Algorithms. Journal of Structural Engineering, 144(2) http://dx.doi.org/10.1080/13632469.2017.1326423.



http://dx.doi.org/10.1080/13632469.2017.1326423
http://dx.doi.org/10.1080/13632469.2017.1326423

NHERI Lehigh EF Experimental Protocols

* Real-time Hybrid Simulation

* Hybrid simulation analytical substructure created by either
« HyCom-3D
» OpenSees with OpenFresco interface

MX;y1 + CXiyq + (RE+RY, ;) = Fiyq

Numerical

X+ and X;4q

integration

Analytical substructure Experimental substructure




HyCom-3D: 3-D Real-time
Computational Modeling

MATLAB and Simulink based 3-D computational
modeling and simulation coordinator software for
dynamic time history analysis of inelastic-framed
structures and performing real-time hybrid simulation

Simulink architecture facilitates real-time testing
through multi-rate processing

Run Modes
 MATLAB script for numerical simulation

« Simulink modeling for Real-Time Hybrid simulation with
experimental elements via Real-Time Targets, and hydraulics-
off for training and validation of user algorithms.

User’s Manual for training
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Three-dimensional analysis

Coordinate system of nodes

Boundary, constraint and restraint conditions
3-D Explicit-formulated Elements

Elastic beam-column
Elastic spring

Inelastic beam-column stress resultant element

Non-linear spring

NL Displacement-based beam-column fiber element

NL Force-based beam column fiber element

Zero-length
NL planar panel zone

Elastic beam-column element with geometric stiffness
User-defined Reduced Order Modeling elements
Co-Rotational force and displacement-based fiber

elements
Gap elements

Geometric nonlinearities

Steel wide flange sections (link to AISC Database)
Reinforced concrete sections
Structural mass & inherent damping properties

Adaptable dissipative, explicit-based integration methods

Real-time online model updating

Com-3D: 3-D Real-time Computational Modeling

ijguration Options:

Neural Network Modeling
Nonlinear static analysis
(load or displacement
control)

Transient multi-natural
hazard analysis

Restart feature for
sequential analysis of

hazards
Materials

Elastic

Bilinear elasto-plastic
Hysteretic
Bouc-Wen

Trilinear

Stiffness degrading
Concrete

Steel

Fracture

Initial stress
Tension-only
Compression-only
SMA



RTHS: Implementation issues and challenges

Simulation coordinator

- O Numerical integration algorithm Experimental substructure |
« Accurate
- 0O Large capacity hydraulic
Preferred system and dynamic actuators
required

J Fast communication 1 Actuator kinematic

compensation

Analytical substructure | L Robust control of dynamic
: actuators for large-scale

structures




RTHS: Implementation solutions
Simulation coordinator

- O Numerical integration algorithm
* Accurate

« Explicit

« Unconditionally stable

« Dissipative

* @ Fast communication

NHERI Lehigh
Solutions

Explicit model-based integration algorithms




Numerical Integration Algorithms

Explicit Modified KR-a (MKR-a) Method
« EXxplicit Integration of Equations of Motion, Model-based

« Unconditionally Stable
« Controlled Numerical Damping — eliminate spurious high frequency

noise
. _ ) o4, 0y, and asz: model-based
Velocity update: Xni1 = X, + Aty X, integration parameters
Displacement update: X,i1 = X, + AtX, + At?a,X,,

MKR-a: One paramter (ps) family of algorithms

Kolay, C., and J.M. Ricles (2014). Development of a family of unconditionally stable explicit direct integration algorithms with
controllable numerical energy dissipation. Earthquake Engineering and Structural Dynamics, 43(9), 1361-1380.
http://doi.org/10.1002/eqge.2401

Kolay, C., and J.M. Ricles (2019) “Improved Explicit Integration Algorithms for Structural Dynamic Analysis with Unconditional 10
Stability and Controller Numerical Dissipation,” Journal of Earthquake Engineering, http://dx.doi.org/10.1080/13632469.2017.1326423



http://doi.org/10.1002/eqe.2401
http://dx.doi.org/10.1080/13632469.2017.1326423

Steel Structure with Nonlinear Viscous
Dampers Studied using Large-scale RTHS

* Prototype building
— 3-story, 6-bay by 6-bay office building located in Southern California

— Moment resisting frame (MRF) with RBS beam-to-column
connections, damped brace frame (DBF), gravity load system,
Inherent damping of building

South  North

Seismic tributary area — South  North
- ' — >
TEEER :
I MRF = & ] ]
I 4'7 1 AV4 AV4 é) Ty
— — DBF ] ™y e
| ] 1] o) —
= Ji H: ﬂ [ DBF DBF RS NN | SRR
8 |
e 2l = =4
North g . """ Fome
East ®
West ] L e E
‘ ‘ South A MRF NRF R N -1 e -
- - - - Gra\fit v ////,!B:I///R//E///fff oesers /K////B«’E/F////// s
‘ 6 @25ft ‘ ‘ 6 @25ft ‘ system
Plan view of prototype building Section view of prototype building Test structure

Dong, B., Sause, R., and J.M. Ricles, (2015) “Accurate Real-time Hybrid Earthquake Simulations on Large-scale MDOF Steel
Structure with Nonlinear Viscous Dampers,” Earthquake Engineering and Structural Dynamics, 44(12) 2035-2055,
https://DOIl.org/10.1002/ege.2572.

Dong, B., Sause, R., and J.M. Ricles, (2016) “Seismic Response and Performance of Steel MRF Building with Nonlinear Viscous
Dampers under DBE and MCE,” Journal of Structural Engineering, 142(6) https://DOI.org/10.1061/(ASCE)ST.1943-
541X.0001482.
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Nonlinear Viscous Dampers
Characterization testing
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Large-scale RTHS on Structure with Nonlinear

Viscous Dampers: Substructures
Substructures for RTHS Phase-1

RBS, typ.

Panel-zone
element

Fiber
element

K
Lean-on
column ) MREF

Analytical substructure
(MRF, mass, gravity system,
iInherent damping)

Real-time state determination :
* Analytical substructure has 296 DOFs and 91 elements; .
* Nonlinear fiber elements for beams, columns, and RBS; Expe” m ental su bStI‘U cture

* Nonlinear panel zone elements for panel zone of beam-column connection; (O-G'Scal e DB F)
* Elastic beam-column element for the lean-on column;

* P-delta effects included in the analytical substructure.



MCE level RTHS using p,, = 1.0
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Kolay, C., Ricles, J., Marullo, T., Mahvashmohammadi, A., and Sause, R. (2015). Implementation and application of the unconditionally
stable explicit parametrically dissipative KR-a method for real-time hybrid simulation. Earthquake Engineering & Structural Dynamics.
44, 735-755, doi:10.1002/eqe.2484.



3-story Steel Frame Building with NL Viscous Dampers
MCE level RTHS using p, = 0.75
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Ground excitation: B-WSM180 component, 1987 Superstition Hills, Westmoreland Fire Station
Hazard level: Maximum considered earthquake (MCE)
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Kolay, C., Ricles, J., Marullo, T., Mahvashmohammadi, A., and Sause, R. (2015). Implementation and application of the unconditionally
stable explicit parametrically dissipative KR-a method for real-time hybrid simulation. Earthquake Engineering & Structural Dynamics.

44, 735-755, doi:10.1002/eqe.2484.




RTHS: Implementation solutions

Analytical substructure |

NHERI Lehigh
Solutions

Explicit force-based fiber elements




Fiber Element State Determination

FE Modeling of Analytical Substructure

Displacement-based fiber elements Force-based fiber elements
O Curvature varies linearly O Equilibrium is strictly enforced
» Requires numerous elements per v' Material nonlinearity can be modeled
structural member to model nonlinear using a single element per structural
response member
» Increases number of DOFs v" Reduces number of DOFs

O State determination is straight forward [EI Requires iterations at the element Ievel]

Qs = My,

X Q3 - l\)]‘z chouﬁued‘ -(_ou{nm‘d
R d=[d; d, d;]T = Section deformation . e e .
>X Jeopardizes explicit integration
VA .
/ 1 D =[D; D, Ds]T = Section forces P P g
Z
Q; =M, q=[%1 4% 493 494+ 9qs 4s]" = Element deformations

Q=[Q:1 Q2 Q3 Qs Qs Q¢]" =Element forces

3-D Fiber element




Explicit-formulated Force-Based Fiber Element

« Used with explicit integration algorithm

« Material nonlinearity

« Equilibrium is strictly enforced along element
 Reduced DOFs in system modeling

* Fixed number of iterations during state determination with carry-
over and correction of unbalanced section forces in next time step

Steel
= rebar
=

Y
Unconfined | | Confined
A z" d=[d; d, ds]" =Section deformation
/ 1 D =[D; D, D3]T = Section forces
Z .
Q,=M,, q=[71 92 93 494+ 495 9qe]" = Element deformations
Q=[0Q; Q; Q3 Q. Qs Q¢]" =Element forces

3-D Fiber element — Deformation Modes

Integration Algorithms. Journal of Structural Engineering, 144(2) http://dx.doi.org/10.1080/13632469.2017.1326423.

| Kolay, C. and J.M. Ricles, (2018). Force-Based Frame Element Implementation for Real-Time Hybrid Simulation Using Explicit Direct


http://dx.doi.org/10.1080/13632469.2017.1326423

EQ RTHS of RC Structure: Fiber Element Real-time
State-Determination
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RTHS: Implementation solutions
Experimental substructure

« Large capacity hydraulic system and dynamic actuators required
 Actuator kinematic compensation

« Robust control of dynamic actuators for large-scale structures

NHERI Lehigh
Solutions

» Large hydraulic power supply system

 Large capacity dynamic actuators

» Servo hydraulic actuator control: Adaptive Time Series Compensator (ATS)

* Development of actuator kinematic compensation

20



Servo Hydraulic Actuator Control

f- Nonlinear servo-valve dynamics
* Nonlinear actuator fluid dynamics
» Test specimen material and
geometric nonlinearities
» Slop, misalignment, deformations
K In test setup

~

=)

 Variable amplitude
error and time delay in
measured specimen
displacement

J

\_

J

« Can cause instability

\_

* Inaccurate structural response

» Delayed restoring force adds energy into <:/

the system (negative damping)

~

J

It IS Important to compensate

21



NHERI Lehigh Solutions to RTHS Challenges
Servo Hydraulic Actuator Control - Actuator Delay Compensation

Displack:em ent

Adaptive Time Series (ATS) compensator oo | eutas @
) ¥ - ) x[r+-£}f,4"“~.,_*______\f ¢ \
c _ t .t »t et x{i+ﬂ|-‘f" ______ T__T L‘;I:It\utdis o
Ug = QorXg T AjiXy T Ao Xy + A3 Xy L et
x(t) L ——A—— ) i
uy: compensated input displacement into actuator —* r‘— _
. . . bttt Tlm;.-
xy: target specimen displacement ajx: adaptive coefficients

Adaptive coefficients are optimally updated to minimize the error between
the specimen target and measured displacements using the least squares

method e (Xixm)-l X:lUc

e d" u
T m_ .m m V4
A=[a0ka1k"'ank] Xy XX n(x )U
e dt U
7 ‘T
m __ m m m ] . .
X" =Ex X, 'xk-qH (Output (measured) specimen displacement history)

/ T
U, =8”k-1 ”k-z"'”k-qH (Input actuator displacement command history)

Chae, Y., Kazemibidokhti, K., and Ricles, J.M. (2013). “Adaptive time series compensator for delay compensation of servo-hydraulic
actuator systems for real-time hybrid simulation”, Earthquake Engineering and Structural Dynamics, DOI: 10.1002/ ege.2294.

Al-Subaihawi, Safwan. (2021) “Real-time hybrid simulation of large structural systems under multi-natural hazards." PhD dissertation,
Lehigh University, Bethlehem, PA.



NHERI Lehigh Solutions to RTHS Challenges

Adaptive Time Series (ATS) Compensator

Unique features of ATS compensator

« No user-defined adaptive gains =» applicable for large-scale structures
susceptible to damage (i.e., concrete structures)

* Negates both variable time delay and variable amplitude error response

« Time delay and amplitude response factor can be easily estimated from
the identified values of the coefficients

« Use specimen feedback

Time Step k
Amplitude error: Az 1
Aok
- .= Gy
Time delay: 1,=—

Ao




MCE level RTHS using p,, = 0.75
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Kolay, C., Ricles, J., Marullo, T., Mahvashmohammadi, A., and Sause, R.. (2015). Implementation and application of the unconditionally
stable explicit parametrically dissipative KR-a method for real-time hybrid simulation. Earthquake Engineering & Structural Dynamics.
44, 735-755, doi:10.1002/ege.2484.




Actuator control: Typical MCE level RTHS & p,, = 0.75

Synchronized Subspace Plots: xt vs. x™
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NHERI Lehigh Solutions to RTHS Challenges

Actuator Kinematic Compensation

 Kinematic compensation scheme and
|mplementat|on for RTHS (Mercan et al. 2009)

Kinematic correction of command displacements for multi- &

directional actuator motions -
— Robust, avoiding accumulation of error over multiple time

Steps; Suited for RTHS e P R T B .
— Exact solution

(MiSNXLneW1 MiSNyLnew ) :(-LMaineWSin(@z +¢i )vLMaineWCOS(@z +¢i )
©, =arcsin Msin O,
yF; /coso;

@3 — arcco I-Mainewz + I-Mbinewz _(yFi /COS(I)i)2
2|-'\/Iainewl-'vlbinew

(SPN™X,0s SPN™Y. ., ) = (M,SN™X o, —Wl‘cos(@Mlyo +d™SPNG), M{SN™y, ., -

VM 1[sin(@M 5 +d "SPN))

Mercan, O, Ricles, J.M., Sause, R, and M. Marullo, (2009).
“Kinematic Transformations in Multi-directional Pseudo-
Dynamic Testing,” Earthquake Engineering and Structural
Dynamics, Vol. 38(9), pp. 1093-11109.




Actuator Kinematic Compensation

3D Directional Loading of Large-scale Timber Structural Subassemlages
Development and Validation of Resilience-Based Seismic Design
* Testing Protocol

» 3-D motions: bi-directional story drift combined with vertical motion of test
specimen

» Adapt actuator kinematic control algorithm to 3-D motion of flexible diaphragm

3D motions of test
specimen

PR N

Instrumentation for measuring 3D motion

(M.SNxL,, M, SNyL . )=(-LMa,, sin(@,+¢;) LMa, . cos(@,+¢;))

LMb,,...
©, = arcsin| ———sin O,
VF;/cost;

2
@. = arccos LMameu + Llemeu (yFl-/COSd);-)
? 2LMa,,,,, LMb

inew inew

(SPN’” 'xneu" SPN”! yneu‘) = (Mj SN"i 'xneu‘

|71,

cos(OM, o +d" SPNO), M;SN"y,.,—  Amer, A. (2022) “Performance of CLT Systems Subject to
Multi-Directional Loading Effects." PhD dissertation, 27

VM1 Lehigh University, Bethlehem, PA

si{@M, ; +d " SPNG))
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3D Directional Loading of Large-scale Timber Structural Subassemlages
Development and Validation of Resilience-Based Seismic Design

Actuator Kinematic Compensation

» Testing Protocol

» 3-D motlons bi-directional story drift combined with vertical motion of
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Is Multi-Directional Loading and Large-
Scale Testing Important?

Scale Effects:
 Heat Transfer:
 Thermal Effects, Residual Stresses in Welded Structures
« Heat Dissipation in Response Modification Devices (e.g., dampers)
« Material Characterization at Reduced Scale:
« Timber, concrete, soil, etc.
» Compliance with Similitude Laws




Is Multi-Directional Loading and Large-
Scale Testing Important?

Multi-directional Effects:
« Out of plane Loading on Lateral-force Resisting Systems Causes Damage
and Effects Resiliency




Is Multi-Directional Loading and Large-
Scale Testing Important?

Multi-directional Effects:
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Is Multi-Directional Loading and Large-
Scale Testing Important?

Multi-directional Effects:

« Members Subjected to Biaxial Bending and Larger Axial forces, Effecting
Their Strength and Structural Resiliency

» Greater Demand on Response Modification Devices (e.g., NL Viscous
Dampers)

Al-Subaihawi, Safwan. (2021) “Real-time hybrid simulation of large structural systems under multi-natural hazards." PhD dissertation, Lehigh
University, Bethlehem, PA.




3-D Real-time Hybrid Simulation
1989 Loma Prieta EQ Bidirectional Ground Motions Scaled to MCE
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Is Multi-Directional Loading and Large-
Scale Testing Important?

 Bidirectional Wind Leads to Torsion, Resulting in Greater Structural
Accelerations

« Cross Wind Effects with Vortex Shedding Can Cause Large Out-of-Plane
Motions and Accelerations

« Greater Demand on Response Maodification Devices (e.g., NL Viscous
Dampers)

Al-Subaihawi, Safwan. (2021) “Real-time hybrid simulation of large structural systems under multi-natural hazards." PhD dissertation, Lehigh
University, Bethlehem, PA.

Al-Subaihawi, S., Kolay, C., Thomas Marullo, Ricles, J. M. and S. E. Quiel. (2020) “Assessment of Wind-Induced Vibration Mitigation in a Tall
Building with Damped Outriggers Using Real-time Hybrid Simulations,” Engineering Structures, 205, art. no. 110044,
https://doi.org/10.1016/j.engstruct.2019.110044.

Kolay, C., Al-Subaihawi, S., Thomas Marullo, Ricles, J. M. and S. E. Quiel, (2020) “Multi-Hazard Real-Time Hybrid Simulation of a Tall Building
with Damped Outriggers,” International Journal of Lifecycle Performance Engineering, Vol. 4, Nos. 1/2/3, pp.103-132,
https://doi.org/10.1504/IJLCPE.2020.108937.



https://doi.org/10.1016/j.engstruct.2019.110044
https://doi.org/10.1504/IJLCPE.2020.108937

3-D Real-time Hybrid Simulation
110 mph, 700 MRI Wind Storm (EW Windward Direction)
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Is Multi-Directional Loading and Large-
Scale Testing Important?

e Yes!

« Quality NSF proposals: Large-scale simulations that
accountant for multi-directional effects

« The NHERI Lehigh EF provides the resources to enable
researchers to investigate these effects
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