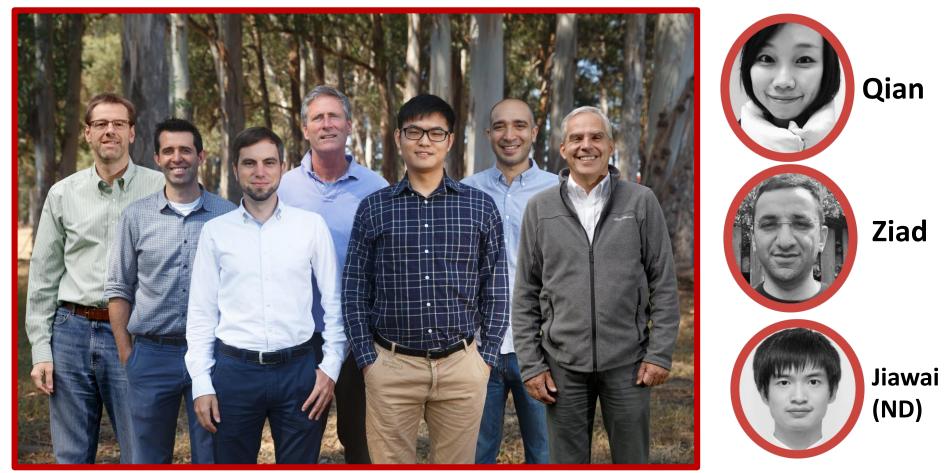


An Introduction to the NHERI SimCenter

Laura Lowes Co-PI University of Washington


NSF award: CMMI 1612843

Leadership Group

Software Development Team

Peter (UW), Michael, Adam (Stanford), Frank, Charles, Wael, Pedro (UW)

Domain Experts

Additional experts in engineering, urban planning, social science, and computer and information science

Iris Tien

George Deodatis

Patrick Lynette

Alex Taflanidis

Joel Conte

Vesna Terzic

Jonathan Bray

Tracy Kijewski-Correa

Michael Motley

Camille Crittenden

Filip Filippou

Ewa Deelman

SimCenter 🚟

Kincho Law

Ertugrul Taciroglu

Stella Yu

Eduardo Miranda

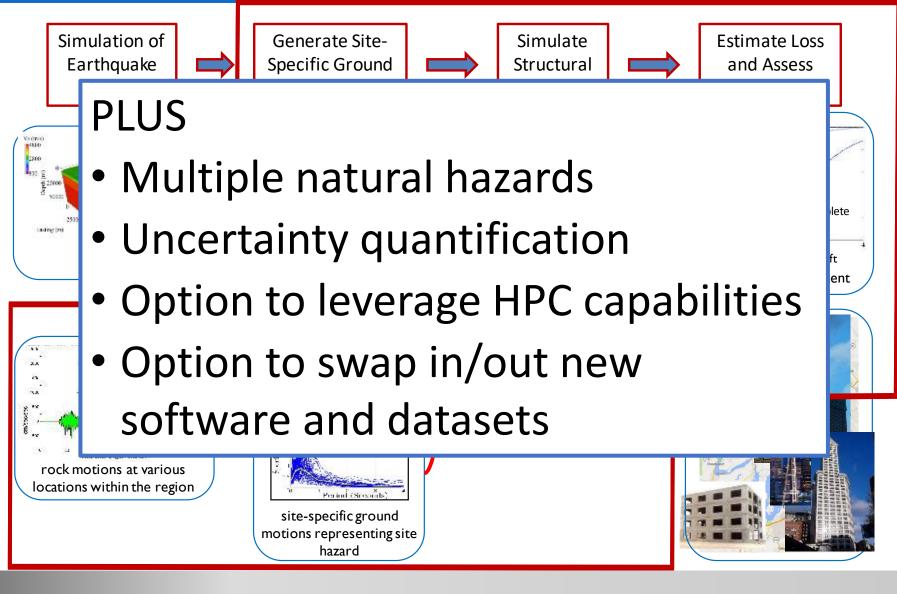
Andrew Kennedy

Paul Waddell

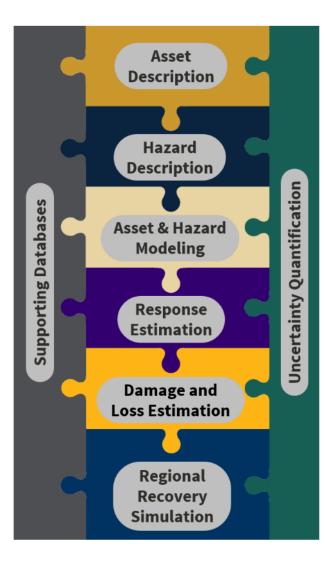
Mission

"Transforming the nation's ability to understand and mitigate adverse effects of natural hazards on the built environment through advanced computational simulation"

Grounded in the present Five year focus Twenty year vision


What is Needed to Accomplish the Mission?

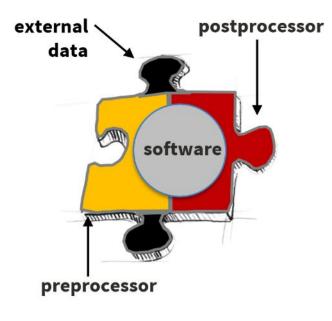
- 1) Applications that generate UQ in Response Quantities
- 2) Applications to perform Performance-Based Engineering
- 3) Applications for Community Resiliency
- 4) Educational Applications



Performance-Based Engineering Framework

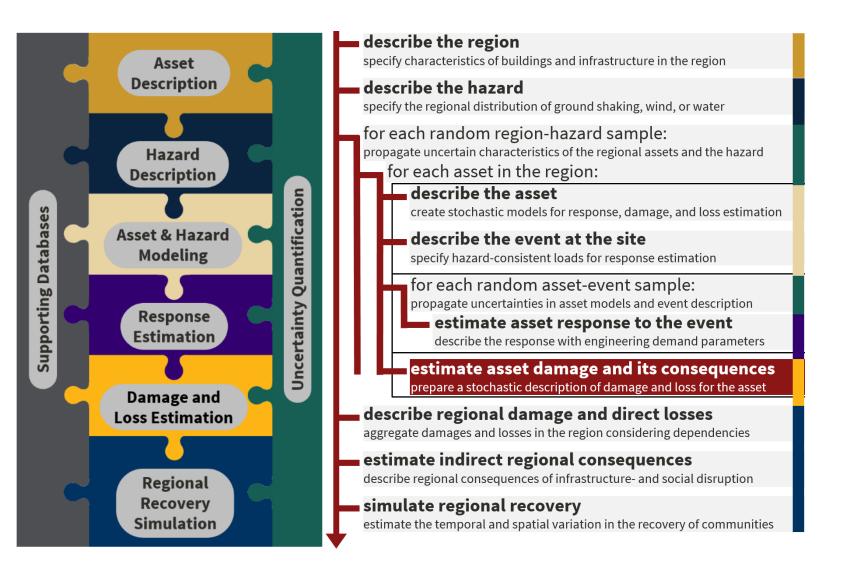
Earth Scientists Str/Geo Engineers Loss & System Modelers Social Scientists

Application Framework

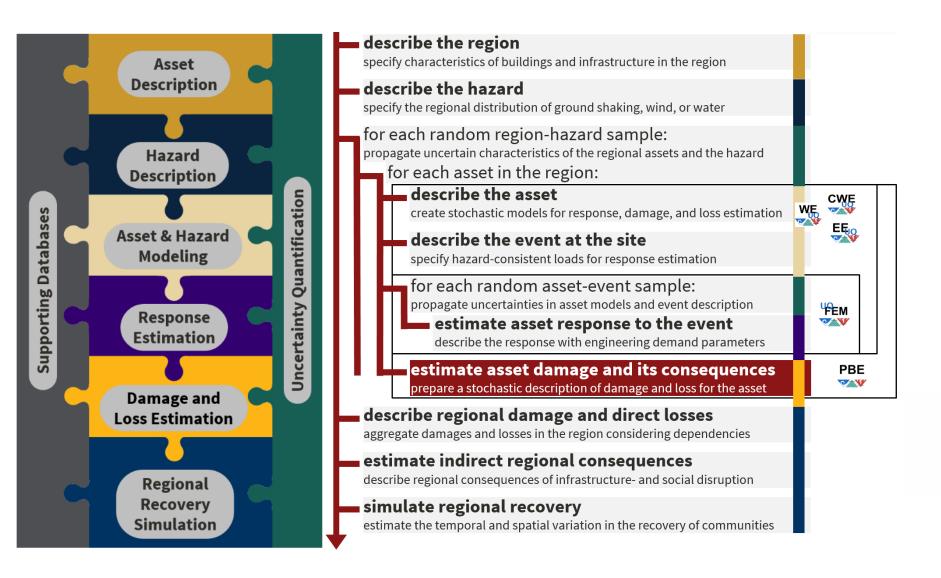


SimCenter ₩

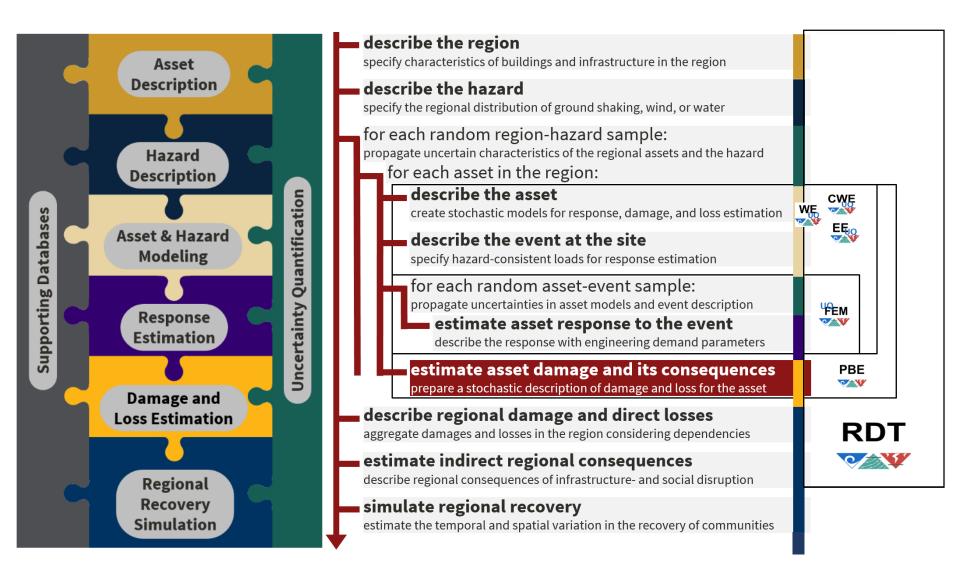
Application Framework:

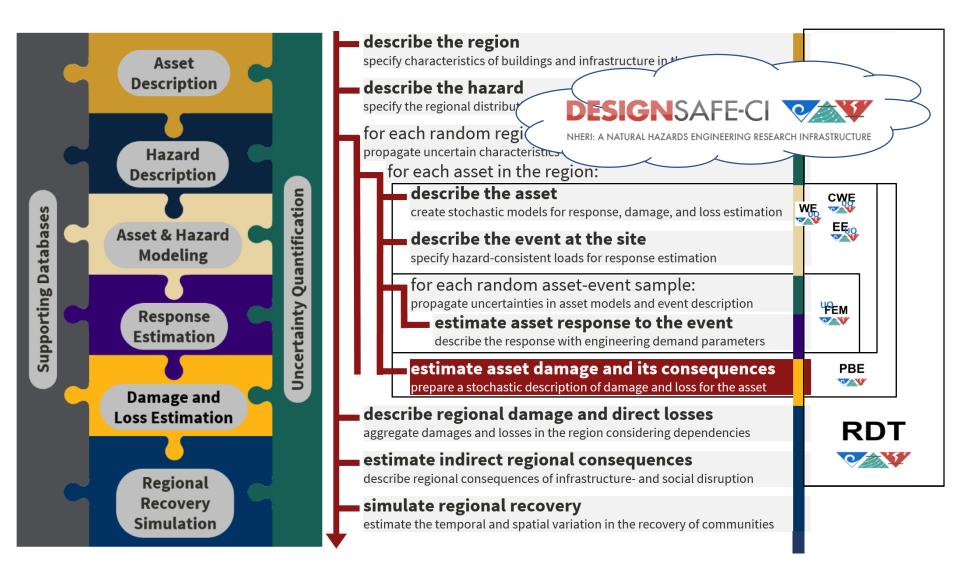

a collection of software connected by standardized interfaces

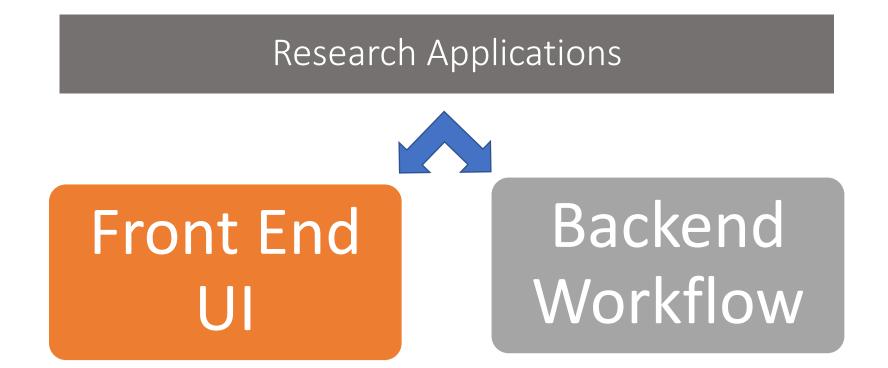
SimCenter efforts focus on framework to connect existing simulation software



HPC resources & data storage at

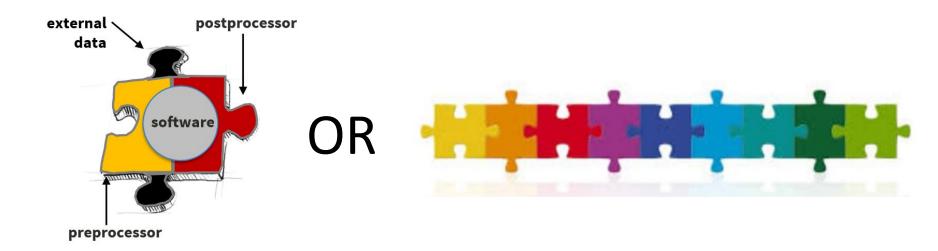






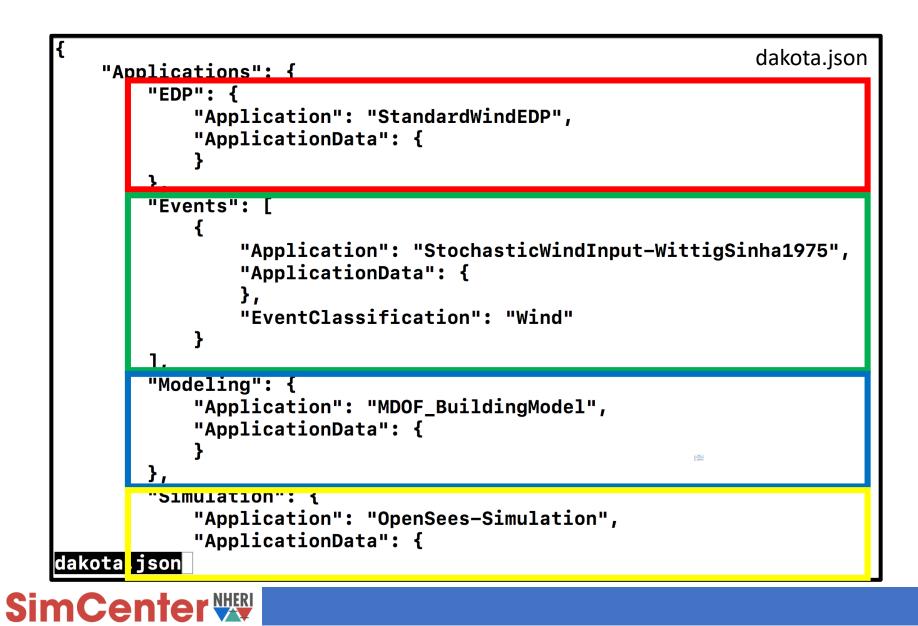
Research Applications

- Front end is an application runs on your desktop
- Backend is a python "workflow" comprising one or more applications that run on either your desktop or on HPC resources provided by DeisgnSafe via the Texas Advanced Computing Center (TACC)


Frontend - UI

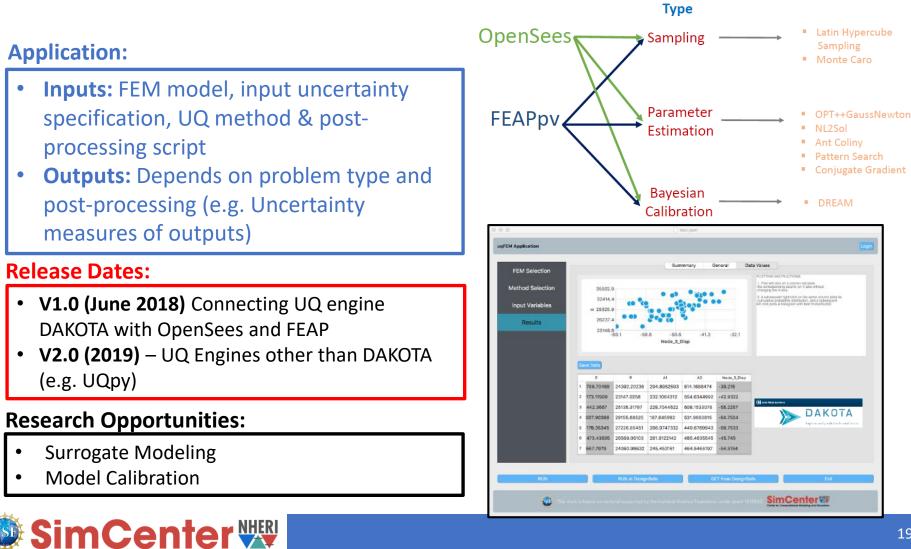
GI	Loading Type DEDM_HRP				
SIM		UAL ORGANIZATION TO REDUCE TH TREME WINDS ON SOCIETY		DE	DM-HRP
	Winds my Toll of EX	TREME WINDS ON SOCIETY			: Inputs
EVT	Wind Tunnel Building Geometry	1			
FEM	y A D	1	2	3	
UQ	B		_		
EDP	Wind	0			
RES	Building Height	O H=1 ○	H=2 H=3	H=4 O H=5	
	Exposure Condition				
	O Urban/Suburban Area		Open Terrain		
	Wind Speed and Duration				
	Mean Wind Velocity at Building	Гор		10	00.0 mph
	Duration			10	min
	Angle of Incidence			0	C degrees
	RUN	at DesignSafe	GET from DesignSafe		Exit

- Front end is an application runs on your desktop
- Backend is a python "workflow" comprising one or more applications that run on either your desktop or on HPC resources provided by DeisgnSafe via the Texas Advanced Computing Center (TACC)



Scientific Workflow Application: A scientific workflow is the automation of a process in which information is passed from one application to the next.

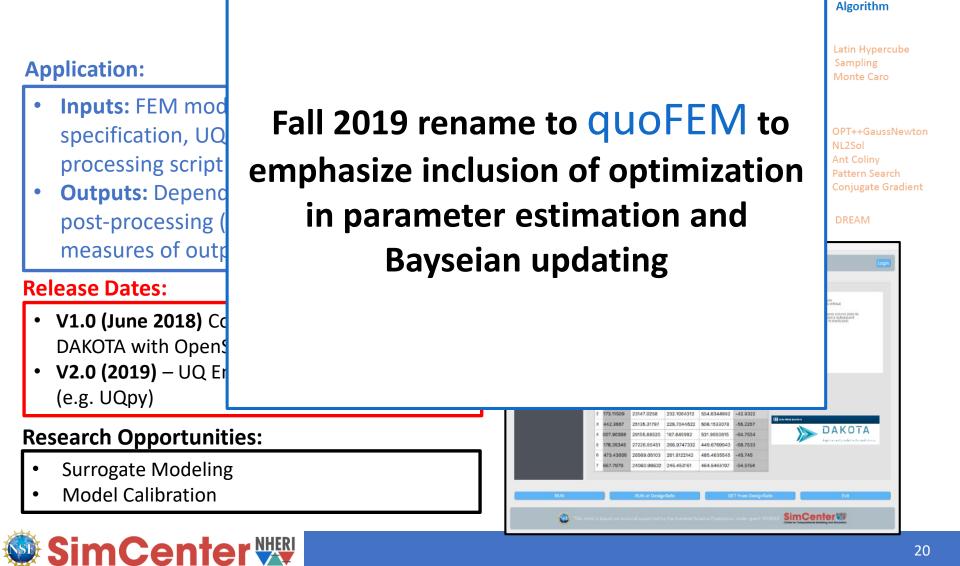
Input file for Backend Workflow is a JSON file



uqFEM Application

Integrates Simulation Applications with UQ Engine(s)

Problem



Algorithm

uqFEM Application

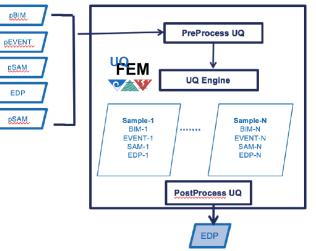
Integrates Simulation Applications with UQ Engine(s)

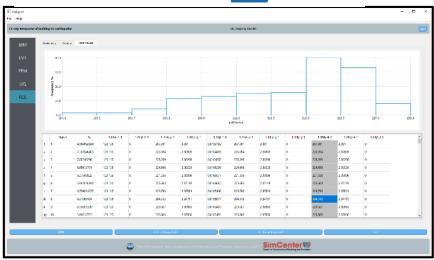
EE-UQ Application

 Quantifies uncertainty in building response when subjected to an earthquake

Application:

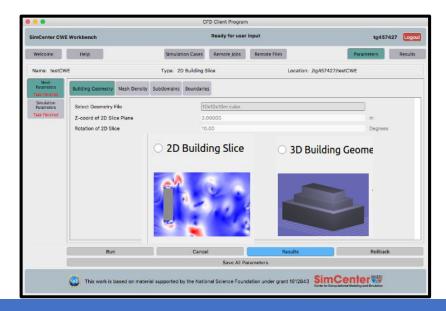
- Inputs: Building information, earthquake event & uncertainty specification
- **Outputs:** Uncertainty measures of building response


Release Dates:


- V1.0 (2018) Uniform Excitation
- V2.0 (2019) Rock Outcrop motions + Expert System
- V3.0 (2020) Soil Box around Building + Machine Learning

Research Opportunities:

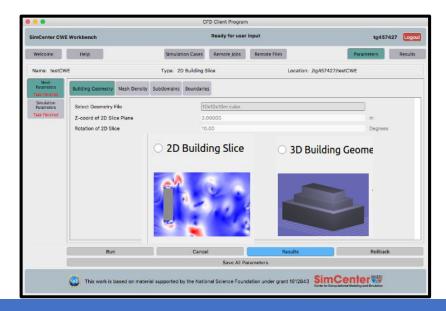
- Finite element modeling
- Hazard characterization
- UQ including surrogate model generation
- Datasets for model calibration



CWE Computational Wind Engineering

- Interface to OpenFOAM (CFD)
- User Inputs Building Information
- User Selects from different loading options & Inputs Parameters
- User Specifies RV distributions
- The tool generates the analysis model, obtains wind forces in building, run a set of deterministic simulations on DesignSafe.
- User selects run & views different output results.
- Version 1.0 (June 2018): Wind Flow around Bluff Bodies
- Version 2.0 (2019): Wind Forces on Building
- Version 3.0 (2020): Multi-fidelity Modeling & UQ

imCenter CWE	Workbench				Ready for user	input		tg4574	127 Log
Welcome	Help		Simular	tion Cases	Remote Jobs	Remote Files	l	Parameters	Result
Name: testCWE			Type: 21	D Building Sl	ice		Location: /tg45742	7/testCWE	
Mesh Parameters Task Finished	Building Geometry	Mesh Density	Subdomains	Boundaries					
Simulation Parameters	Select Geometry F	ile		10:	(10x10m cube				
Task Finished	Z-coord of 2D Slic	e Plane		2.0	0000			m	
	Rotation of 2D Slid	ce .		10.	00			Degrees	
-	Run			Cancel		R	Results	Rollback	
					Save All Pa				



CWE Computational Wind Engineering

- Interface to OpenFOAM (CFD)
- User Inputs Building Information
- User Selects from different loading options & Inputs Parameters
- User Specifies RV distributions
- The tool generates the analysis model, obtains wind forces in building, run a set of deterministic simulations on DesignSafe.
- User selects run & views different output results.
- Version 1.0 (June 2018): Wind Flow around Bluff Bodies
- Version 2.0 (2019): Wind Forces on Building
- Version 3.0 (2020): Multi-fidelity Modeling & UQ

imCenter CWE	Workbench				Ready for user	input		tg4574	127 Log
Welcome	Help		Simular	tion Cases	Remote Jobs	Remote Files	l	Parameters	Result
Name: testCWE			Type: 21	D Building Sl	ice		Location: /tg45742	7/testCWE	
Mesh Parameters Task Finished	Building Geometry	Mesh Density	Subdomains	Boundaries					
Simulation Parameters	Select Geometry F	ile		10:	(10x10m cube				
Task Finished	Z-coord of 2D Slic	e Plane		2.0	0000			m	
	Rotation of 2D Slid	ce .		10.	00			Degrees	
	Run			Cancel		R	Results	Rollback	
					Save All Pa				

Wind Engineering

- Assess the building performance to wind loading. The application is focused
- Quantifying uncertainties in predicted response due to uncertainty in building properties, wind load, and simplification incorporated in simulation software.
- Option to perform simulations on the Stampede2,

Version 1.0 (July 2019)

JQ: Wind Engineering with Uncertain	ty Quantification Successfully downloaded file	WE-UQ: V	Wind Engineering with Uncertainty Quantification	WE-UQ: Wind Engi	neering with Unce	rtainty Quantificati	on						0
GI Loading Type CFD - Ex SIM OpenFQAM Parame Case EVT Solver FEM Solver FEM Meshing Inflow Conditions EDP Turbulent inflow Mod	ters ageve://designsafe.storage.community/SimCense/Software/WE_UQ/Examples/SompleBuilding pisoFoam Binning with uniform floor heights blockMesh	Gi Sile EVI FEN	Stochastic Loading Model Writig & Sinha (1975) This model provides wind speed lime histories using a power law for the win Category and a discrete frequency Uncefon with PT to account for wind flue Drag CetterTions (16 ASCE 7 Exposure Condition 8 Gust Wind Speed Imph) (95.0	gi Sim EVT FEM UQ	0.008 5 0.006 0.005 - 0.004 0.004	••••	••••	Summary	General	Data Values	24.9		32.9
RES Source location select what bound inter Method selection digital filter shape function grid factor filter factor interaction direct 0.00 yOffset	gaussian (gaussian 100 4 system definition			EDP	Bun # 1 1 2 2 3 3 4 4 5 6 7 7	6.346530469 6.037129383 6.931296623 6.58036209 6.802162389 5.368135259	69.60614422 51.74913114 60.85883384 56.68521777	33023.1409	1.560335579 1.448121408 1.508438074 1.686192042	0 0 0 0	1-7FA-1-1 132,101 133,297 123,942 128,878 152,684 155,282 124,98	1-970-1-1 0.856505 0.766875 0.734119 0.755754 1.08197 1.01683 0.867031	5-90-1-1 0.00594795 0.00532552 0.0050806 0.00524529 0.00751365 0.00705135 0.00502105
RUN	RUAr at DesignSulfe OFF Trom DesignSulfe Dot menterial suggestrate Dy the there's as Sources Foundation under grant 1002033	_ =	RUN RUN at DesignSurle GET		RUN		RUM at Designifie			rom Designifiate Geographics (UCD)	SimC	enter	Exit

PBE Application

 Probabilistic damage & loss calculations of a building subjected to a natural hazard

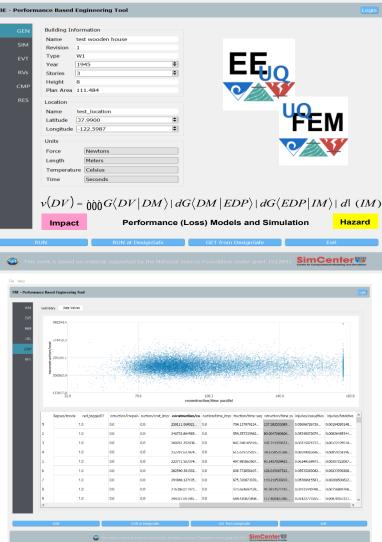
Application:

• Inputs:

Building & structural information, Hazard characterization,

Contents,

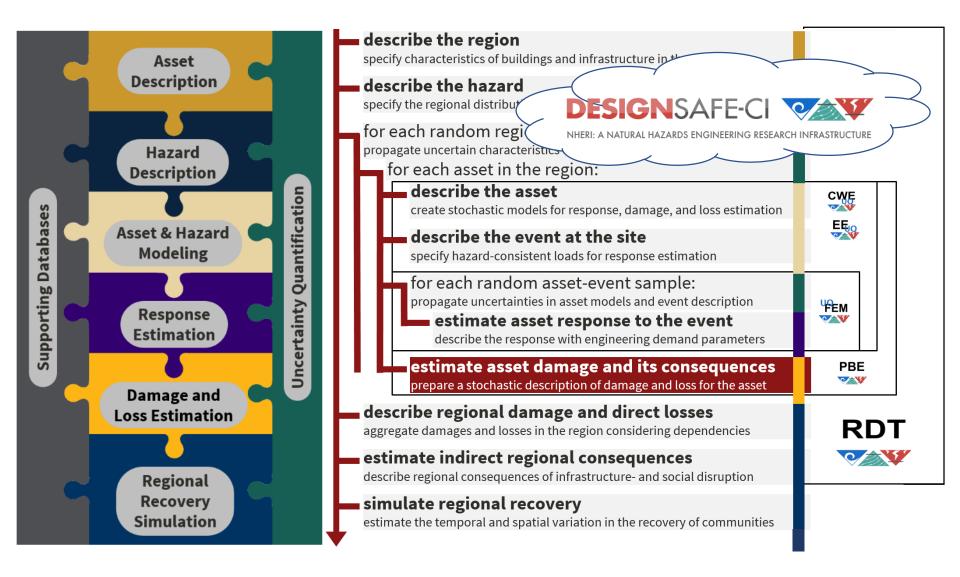
Damage & loss functions, e.g. **P58, HAZUS, Pelicun,** or user-defined.


Outputs: Damage, loss, and consequences

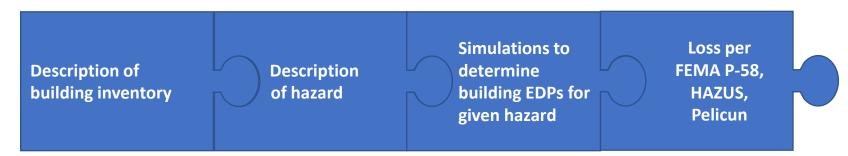
Release Dates:

- V1.0 (Oct 2018) Earthquake
- V2.0 (2020) Other Hazards

Research Opportunities:


- Damage & loss calculations
- Validation of fragility and consequence functions

COMING in 2020: Resiliency Decision Tool



RDT Creates and executes a regional loss workflow

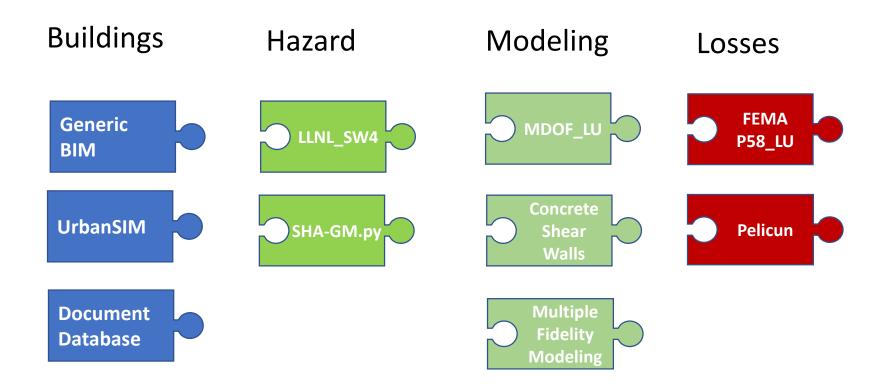
 Backend application for regional hazard and loss simulations includes multiple individual applications.

Current Release V1.1 (Feb 2019)

- Regional earthquake workflow
- Various hazard representations

Future Release V2.0 (Sept 2019)

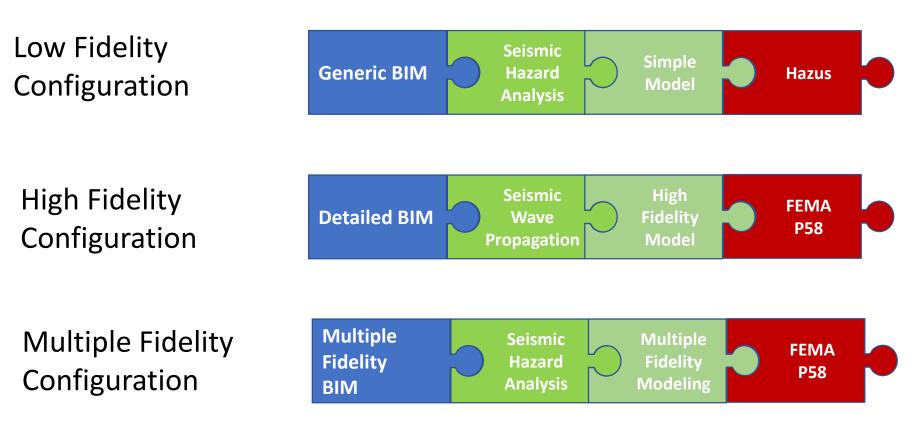
- Regional Hurricane workflow
- Initial version to consider ASCE7 wind loading and HAZUS type damage and loss


Development team: Deierlein (lead), Kareem, Conte, Deelman, Deodatis, Kijewski-Correa, Taflanidis, Tien, Frank McKenna, Wael Elhaddad (software development)

RDT Workflow for Regional (EQ) Loss Simulation

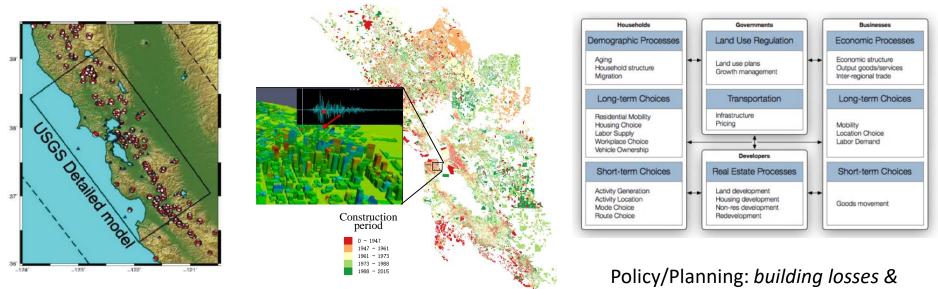
Applications

The Application Framework provides applications with standard interfaces



Configuration

Chain a set of applications into a building workflow


RDT creates a JASON script

	Untitled — Edited ~
	🚞 Workflow — emacs Workflow1.json — 137×55
"ApplicationData": "Min": "1", "Max":"1856000", "parcelsFile":"/	.json", n": "UrbanSimDatabase",
"EventApplication "ApplicationData "pathSW4resul	
"ApplicationData	tion": "MDOF-LU", ": { /Users/fmckenna/NHERI/Workflow1.1/createSAM/data/HazusData.txt"
"EDP": { "EDPApplication" "ApplicationData	: "StandardEarthquakeEDP", ": {}
"Simulation": { "SimulationApplicat "ApplicationData":	
"UQ-Simulation": { "UQApplication": "D "ApplicationData":	
"ApplicationData": "filenameSetting "pathCurves":"/U	tion": "FemaP58–LU", { s":"/Users/fmckenna/NHERI/Workflow1.1/createLOSS/data/settings.ini", sers/fmckenna/NHERI/Workflow1.1/createLOSS/data/ATCCurves/", "/Users/fmckenna/NHERI/Workflow1.1/createLOSS/data/normative/"
} uu-:**-F1 Workflow1.json	Top L11 (Fundamental)

-uu-:**-F1 Workflow1.json Auto-saving...done

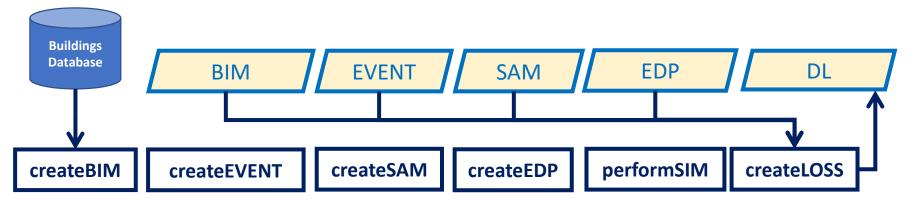
Regional End-to-End Testbed (EQ)

M7.0 Hayward Fault

1.8 million buildings in SF Bay Area

Policy/Planning: *building losses & downtime in 2010 and 2040*

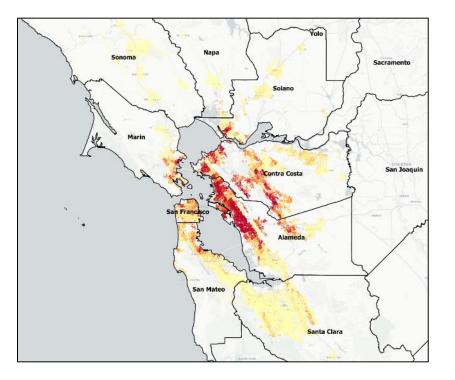
Objective: develop/exercise a computational workflow for a significant simulation that can engage broad NEHRI community


Ground Motions: 3D simulation, GM's at 2km grid (Rodgers, Pitarka & Petersson) Building Inventory: UrbanSim and DataSF Portal; geometry, age, occupancy Building Analyses: OpenSees, simplified NL MDOF, FEMA P58 (w/Cheng & Lu, Tsinghua) Visualization: Q-GIS, UrbanSim

Interpretation: UrbanSim - urban growth, damage/loss, displaced occupants/population

Registered Workflow Applications

Туре	Name	Description
erecto DINA	GenericBimDatabase	Creates a simple BIM from a building flat file (csv)
createBIM	UrbanSimDatabase	Creates a simple BIM from UrbanSim simulation outputs
	LLNL_SW4	Gets Event input from SW4outputs
createEVENT	SHA-GM	Computes event input using SHA and record selection/scaling
createSAM	MDOF_LU	Creates a MDOF shear building model
createEDP	StandardEarthquakeEDP	Defines the standard EDPs used for a seismic event
performSIM	OpenSeesSimulation	Performs simulation using OpenSees and calculates the EDPs
createLOSS	FEMAP58_LU	Calculates damage and loss estimates using FEMA P58 procedure
performUQ	DakotaFEM	Propagates uncertainty in all applications using Dakota


SimCenter 🐯

Comparison of Building Damage

SONOMA

MARIN

SAN FRANCISCO.

SimCenter Workflow

- Red-tagged buildings 141,400

📡 SimCenter 🚟

- Net buildings damage ratio 5.6%

USGS Haywired

MATEO

- Red-tagged buildings 101,000

NAPA

SO

CON

- Net buildings damage ratio 2.9%

STAN

Building damage ratio—damage divided

<0.1% 0.1–0.5%

0.5–2.5% 2.5–5%

5–10% >10%

AMEDA

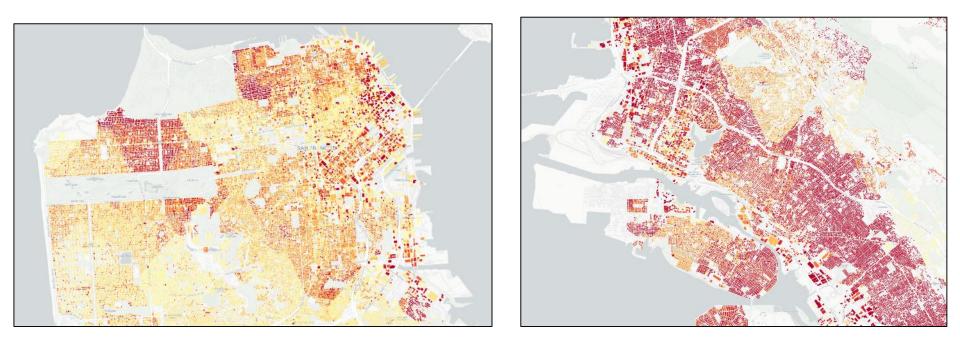
SANTA CLARA

by replacement value,

expressed as a percent)

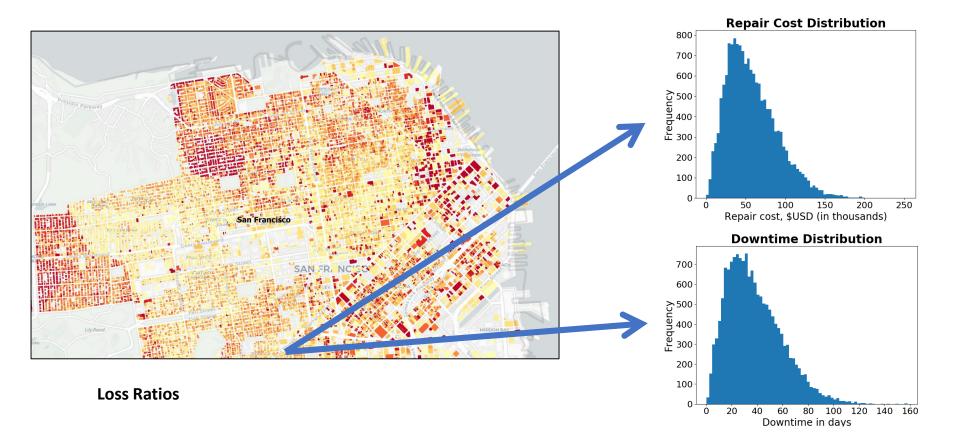
Comparison To HayWired Scenario

• **HayWired Scenario:** A study lead by USGS, involving approximately 60 partners, to simulate the effects and consequences of a hypothetical, yet scientifically realistic, magnitude M7.0 earthquake on the Hayward fault.


	HayWired Scenario	SimCenter Testbed
Number of Buildings	3 Million	1.84 Million
Red Tagged Buildings	101,000	141,459
Building Damage	\$30.3 Billion	\$84.1 Billion
Net Damage Ratio	2.91%	5.6%
Total Buildings Cost	\$1.04 Trillion	\$1.5 Trillion

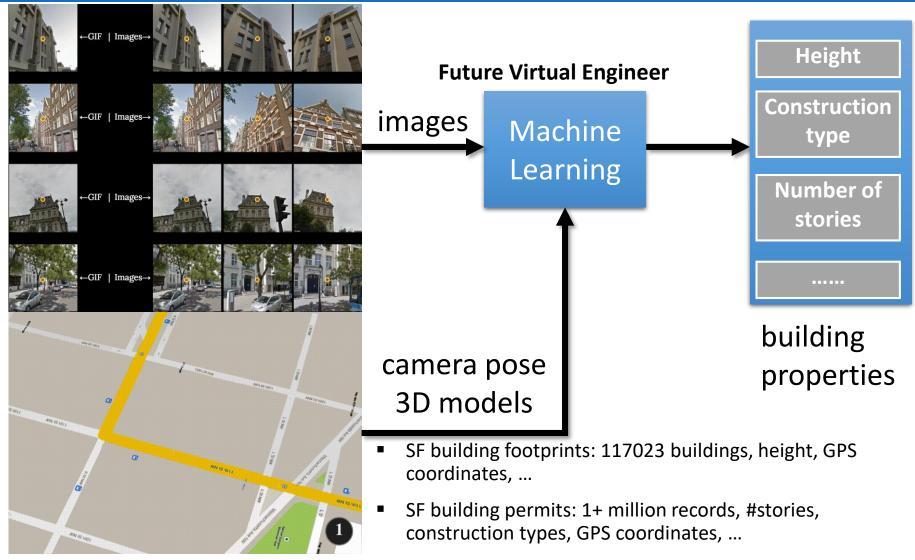
Detweiler, S.T., and Wein, A.M., eds., 2018, The HayWired earthquake scenario—Engineering implications: U.S. Geological Survey Scientific Investigations Report 2017–5013–I–Q, 429 p., https://doi.org/10.3133/sir20175013v2.

High Resolution Results


Parcel-level Data of Building Damage

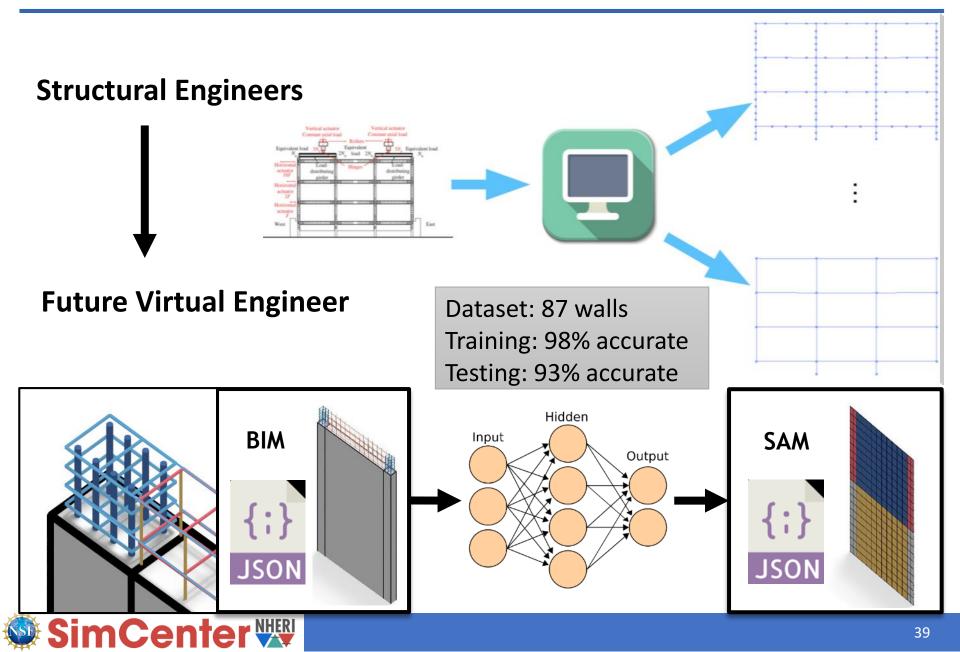
San Francisco Oakland - Alameda Opportunities to evaluate planning and policy decisions (land use, retrofit, etc.)

Parcel Level Results



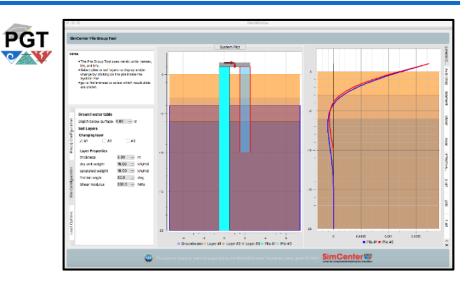
Additional SimCenter Products

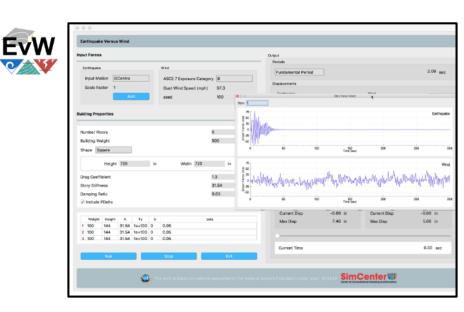
- rWHALE: Regional Workflow for Hazard and Loss Estimation
 - Library of all of the applications (used in uqFEM, EEuq, CWEuq ...) that "wrap" existing software to enable workflows.
 - Developer: Zsarnóczay
- PELICUN: Probabilistic estimation of losses, injuries, and community resilience under natural disasters
 - Encompasses FEMA P-58 and HAZUS fragilities
 - Development team: Miranda, Terzic, Baker, Kijewski-Correa, Zsarnóczay
- SMELT: Stochastic, modular, and extensible library for time history generation
 - Developer: Michael Gardner
- S3hark Site Response
 - Development team: Deodatis, Bray, Arduino, Baker, Taciroglu, Wang
- Al Tools (in development)
 - Development team: Yu, Law, Taciroglu, Wang
- Educational Applications: MDOF EVW PGT BFM

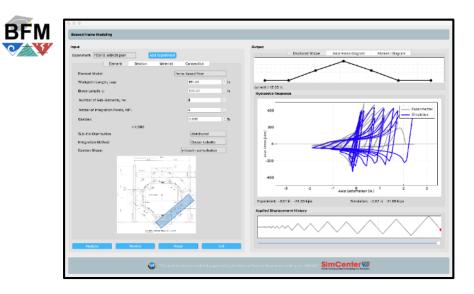

SimCenter product: AI for Data to BIM

SimCenter 🚟

 SF land use: 115,468 records, land use types, year built, GPS coordinates, ...


AI Applications: BIM to SAM




Educational Applications

ut Metiion	_				Earthq	uake Motion	Output Displaced Shape	
put Motio	en BCer	סילו		Sca	e Fector	1 Add	Max Dop Fundemental Period	7.96 in 2.09 sec
na kala Du	unation				31.2	886	1	
ding Prop	perties							
umber Ho	2013				6		/	
uliding We					500		1	
uikling He	-				720			
lory Stille	-				31.54	kfin	(
emping R					0.05	5		
include i					11111			
week	Halger	ĸ	- N	ъ		2618	\	
100	144		1e+100					
100	144		1e+100					
100	144		1e+100				Current Time	4.70 sec
100	166		10+100				Current Roof Disp	-0.12 in
51			Stee			Exit	- Males Manana Males Carl para manasara ma	pga: 0.53g MM vr~wr~n

Educational Applications

put Forces									Output			
Earthqua	ke				,	Vind			Fundamental Period)		2.07 se
Input Mo	tion E	Centro				Exposure Category	A		Earthquake		Wind	
Scale Fa	ctor 1					Gust Wind Speed						-
			Add			Simulation Scheme	Discrete Frequence	cy .				I
	_											
uiding Prop	perties											1
									-			1
Number Flo	ors						5					
Building We	eight						500	k	+			+
Shape Sq	uare		1									
_			·									1
	Heig	ht 900)	in	1	Width 720) in					ł
Drag Coeffi	icient						1.0					1
Story Stiffn	ess						31.54	k/in				1
Damping R	atio						0.05	%				t
🗹 Include i	PDelta											
Weight	Height	к	Fy	b	zeta							•
1 100	180		1e+100		0.05				Max Disp	7.18 in	Max Disp	4.92 in
2 100 3 100	180 180		1e+100 1e+100		0.05							
4 100	180		1e+100		0.05							
									Current Time			15.10 sec
									Current Roof Disp			1.05 in
						top			Content Noor Drap			1.000 01

SimCenter 🐯

Educational Applications

200	2.09 g
•	
•	Earth
•	Earth
•	Earth
200	Earth
200	
200	
200	
	258
1. I.A. a.	at the s
allenter Marth	will be a strategy with the st
1 1	4 10.0
200	258
Current Disp	-0.00 in
	5.06 in
	0.00 se
	200 Current Disp Max Disp

Opportunities for Learning More

SimCenter Online Webinars

Advances in Computational Modeling and Simulation	Early Career Researcher Forum	Natural Hazards Engineering 101
NEW HPC Ground Motion Simulations of Large Hayward Fault Earthquakes	NEW Tsunami-Induced Turbulent Coherent Structures: Large-Scale Experimental Observations and Interpretation February 21, 2018	NEW Understanding Tsunamis and Their Effects August 30, 2017 • Watch Webinar
• Watch Webinar	Watch Webinar	Computational Fluid Dynamics, Simulation & Computational Tools
Al & Machine Learning in Natural Hazards Engineering: Technical & Modelling Q & A November 6, 2018 • Watch Webinar	HPC Aided Seismic Risk Assessment of Vertical Concrete Dry Casks December 13, 2017 • Watch Webinar	June 12, 2017 • Watch Webinar
UQ Computational Advances for Natural Hazard Risk Assessment October 24, 2018 • Watch Webinar	Modeling of 500-year Cascadia Subduction Zone Tsunami Inundation November 1, 2017	Exploring Wind Engineering May 17, 2017 • Watch Webinar

Educational Opportunities

SimCenter Tool Training Workshop (expected Summer 2020)

Summer Programming Bootcamp (expected Summer 2020)

Summer REU Program

SimCenter 🚟

https://www.designsafe-ci.org/learning-center/reu/

Engage and Collaborate with SimCenter

- Subscribe to SimCenter news and join Slack channels
 - https://simcenter.designsafe-ci.org/join-community/
- SimCenter Research Tools
 - https://simcenter.designsafe-ci.org/research-tools
- Software Source Codes and Contributions
 - <u>https://github.com/NHERI-SimCenter</u>
- Letters of support and collaboration questions
 - https://simcenter.designsafe-ci.org/about/collaborate/

