

NHERI Lehigh Facility User Experience Seismic Hazard Mitigation with Pressurized Sand Dampers and their Response in Extreme Temperatures

Kostas Kalfas

Assistant Professor: <u>kkalfas@uttyler.edu</u> The University of Texas at Tyler College of Engineering, Dept. of CE, Tyler, TX

LEHIGH UNIVERSIT November 16, 2023 NHERI Lehigh Experimental Facility – Researchers Workshop

SMU & ATLSS Research Center Staff and Technicians

Quest for velocity-independent (hysteretic) dissipation

Widely used response-modification devices

Response modification devices to serve sustainable infrastructure

Retrofit of Benicia-Martinez Bridge, California

Seismic Retrofit of Richmond-San Rafael Bridge, California

Widely used response-modification devices: Fluid dampers

San Diego Coronado Bridge, California

91/5 overcrossing, southern California

Rion-Antirion cable-stayed bridge, Western Greece San Francisco-Oakland Bay Bridge, Northern California

Widely used response-modification devices: BRB & ADAS

Kaiser Santa Clara Medical, California

Hildebrand Hall -- UC Berkeley, California

Salt Lake City, Utah

Dalian University of technology, China

Bay Bridge (San Francisco) retrofitting scheme

Bay Bridge (San Francisco) retrofitting scheme

Prototype Pressurized Sand Damper

Prototype Pressurized Sand Damper

Pressurized Sand Damper — Experimental campaign

- Tubes with different diameters and lengths
- Spheres with different diameters
- Subjected to different stroke amplitudes, pressure levels, cyclic frequencies

Pressurized Sand Damper — Experimental set up

Behavior of the PSD

Normalized loops to the strength of the PSD, $F_{SD}(u = 0) = \Pi_S pr^2 + \mu k p \pi d_{rod} L_{net}$

Master Curves

*Kalfas KN, N Makris, and U El Shamy. 2023. "Assessment of the effect of design parameters of pressurized sand-dampers from component testing." *ASCE - J Eng Mech*, **149(10)**, pp: 04023072

Nonlinear real-time hybrid simulations of structural systems with pressurized sand dampers

Nonlinear real-time hybrid simulations of structural systems with pressurized sand dampers

Double-ended sand damper to be mounted on the CLT rocking wall

Double-ended sand damper to be mounted on the CLT rocking wall

*Kalfas KN, N Makris, and U El Shamy. 2023. "Assessment of the effect of design parameters of pressurized sand-dampers from component testing." *ASCE - J Eng Mech*, **149**(**10**), pp: 04023072 Kalfas KN, L Cao, JM Ricles, and N Makris. 2024. "Seismic response of CLT rocking structures equipped with pressurized sand dampers through real-time hybrid simulations." *ASCE - J Eng Mech* (under preparation)

Nonlinear RTHS of rocking systems with PSDs: Input motions

Real-time Hybrid Simulation of a CLT Rocking Wall System equipped with Pressurized Sand Dampers (PSD) subject to **DBE Level Kocaeli Earthquake**

© 2023 Lehigh University - Thomas Marullo & Liang Cao

6 °C = 43 °F: reached after approximately 5 hours

40 °C = 104 °F: reached after approximately 1 hour and 42 minutes

60 °C = 140 °F: reached after approximately 2 hours and 20 minutes

REU Experience

Future Steps – CLT rocking wall with supplemental damping

- 5/8-scale cross-laminated timber (CLT) rocking wall
- Allow for a drift ratio, $\frac{u}{2h}$, of 3% \Rightarrow rocking wall maximum rotation:

 $\theta_{max} \approx \tan \theta_{max} = \frac{u}{2h} = 0.03 \ rad$

• Maximum damper elongation:

 $e_{1,max} = (2b + d) \tan \theta_{max} \approx$ 2 in

Future Steps – CLT rocking wall with supplemental damping

Acknowledgements

The pressurized sand damper project has been funded by the National Science Foundation under grant No. CMMI - 2036131. The SMU - Lehigh collaboration has been funded by the NSF under grant No. CMMI -2037771. We would like to thank the machinist of SMU, Ken Sangston, as well as the ATLSS

Engineering Research Center staff and technicians.

18 and Batter

Thank you for your attention!

Kostas Kalfas

Assistant Professor: <u>kkalfas@uttyler.edu</u> The University of Texas at Tyler College of Engineering, Dept. of CE, Tyler, TX

