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Coupled Shear Wall Systems
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Conventional Coupling Beams
 Typical coupling beams are short

« Large shear force demands under large reversed-cyclic
rotations
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Post-Tensioned Coupling Beams
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Post-Tensioned Coupling Beams




Validation & Design Process

« ACI 318:

“..the proposed system shall have strength and toughness
equal to or exceeding those provided by a comparable
monolithic reinforced concrete structure satisfying this
chapter.”

« Validation and Design Documents

'« ACIITG-5.1 — Acceptance Criteria for Special Unbonded
~' Post-Tensioned Structural Walls Base on Validation
Testing and Commentary

« ACIITG-5.2 — Requirements for Design of a Special
Unbonded Post-Tensioned Shear Wall Satisfying ACI ITG-
5.1 and Commentary

« ACI 318 — Building Code Requirements for Structural
Concrete and Commentary




3.

Research Objectives

To develop a validated seismic design
procedure

To conduct system-level experimental
evaluations

To validate analytical models and simulation

'tools that predict system behavior
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Prototype Structure
« Eight-Story Office Building (coupling degree=30%)
 Designed for Seismic Category D in Los Angeles, CA
+ S.=1.50; S,=0.60; C;=0.136-0.154; R=6.0; C,=5.0
« Base Moment for Full-Scale Core Wall ~134,000-151,000 kip-ft

l, / h, =4.0 (Specimen 1)

prototype = 3.0 (Specimen 2)
core wall

|
B.35m 2.44m 3.35
KAt {8 B2 i 4
PT slab
[203 mm (8 in.) thick]

7.62m 7.62m 914 m 762m 7.62m

(25 ft) (25 ft) (30 ft) (25 ft) (25 ft) 358m 244m 3.58m
(11.75 ft) (8 ft) (11.75 ft)




NEES Test Setup at Lehigh Univ. (40%-scale)
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Applied 39 Floor Drift History
ACI ITG 5.1 loading protocol
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Instrumentation
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Digital Image Correlation (DIC)
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Coupling Beam Reinforcement (Specimen 1)
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Wall Pier Reinforcement (Specimen 1)
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Total Base Shear versus 3™ Floor Drift
(Specimen 1)
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Reasons for Starter Bar Fracture
1. Lap spllces above foundation

wall flange
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Reasons for Starter Bar Fracture
2. Deterioration of concrete at top of foundation

Specimen 1 [
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Detail Change in Wall Pier Toes

Specimen 1
(per ACI 318-11)
wall pier

3 toe

bonded
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Coupling Beam Changes

Specimen 1

unbonded PT ED mild steel
strands in ducts mild steel skin reinforcement

Specimen 2

unbonded PT mild steel
strands in ducts skin reinforcement
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Total Base Shear versus 3™ Floor Drift
(Specimen 2)
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Comparison of Wall Pier Toe Damage
[ deterioration
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Coupling Beam Damage
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Beam End Rotations
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Conclusions (PT Coupling Beams)
« Completed 2 large-scale system-level experimental tests
 Performed as predicted and validated the design approach

« Demonstrated ductile behavior up to 10.5% beam end
rotation

« Coupling beams provided adequate and stable coupling in
both specimens (30% coupling)

. Sujdport the classification of unbonded PT coupled wall
structures as “special” RC shear walls

« Demonstrated intended behavior and advantages of the new
coupling system

“‘*ﬂlly PT beams may be preferred over partially-PT beams

AS



Conclusions (Wall Pier Bases)

« Lap splices of vertical starter bars above foundation resulted
In concentration of cracking at wall base (with little
distributed cracking within spliced wall height)

 There was also significant deterioration to concrete at top of
foundation

« Failure in Specimen 1 occurred due to buckling and
subsequent fracture of starter bars in wall pier toes

{
 Unbonding of starter bars in toes improved behavior of
Specimen 2 by delaying buckling/fracture of starter bars

e General recommendation for RC shear walls:
= consider lack of cracking over splice length of starter bars

(gt

= unbonding of starter bars may delay bar fracture

30
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Post-Tensioned Coupling Beams
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Load Application
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Detail Change in Wall Pier Corners
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total base shear force

total base shear force

Comparison of Large Drift Response
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Comparison of Wall Pier Corner Damage
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Specimen 1 Movie

YouTube



https://youtu.be/CzafIPmRgj8?t=18s

3'Y Floor Drift Components (Specimen 2)
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Beam PT Stresses
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Energy Dissipation
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