
Cast-in-Place RC Coupled Shear Walls:
Unbonded Post-Tensioned Coupling Beams &

Debonded Starter Bars at Wall Base

NHERI Lehigh Researcher’s Workshop 

Bethlehem, PA

December 5-6, 2016

Yahya C. Kurama, Ph.D., P.E.

Steven M. Barbachyn, M.S.

University of Notre Dame

Michael J. McGinnis, Ph.D.

University of Texas at Tyler

Richard Sause, Ph.D., P.E.

Lehigh University



Coupled Shear Wall Systems
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• RC coupled shear wall 

structures are a commonly 

used primary lateral load 

resisting system

• Two or more shear wall piers 

connected by coupling (or 

link) beams

• Provide large lateral strength, 

stiffness, and energy 

dissipation



Conventional Coupling Beams
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• Typical coupling beams are short

• Large shear force demands under large reversed-cyclic 

rotations



Conventional RC Coupling Beam

Post-Tensioned Coupling Beams
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Partially Post-Tensioned RC Coupling Beam

(Specimen 1)

unbonded PT

steel in duct

PT anchor at

end of wall pier

energy dissipating (ED)

mild steel bar with

debonded length

Fully Post-Tensioned RC Coupling Beam

(Specimen 2)

left wall pier right wall pier



Conventional RC Coupling BeamPost-Tensioned RC Coupling Beam
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Post-Tensioned Coupling Beams
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Validation & Design Process
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• ACI 318:
“...the proposed system shall have strength and toughness 
equal to or exceeding those provided by a comparable 
monolithic reinforced concrete structure satisfying this 
chapter.”

• Validation and Design Documents
• ACI ITG-5.1 – Acceptance Criteria for Special Unbonded

Post-Tensioned Structural Walls Base on Validation 
Testing and Commentary

• ACI ITG-5.2 – Requirements for Design of a Special 
Unbonded Post-Tensioned Shear Wall Satisfying ACI ITG-
5.1 and Commentary

• ACI 318 – Building Code Requirements for Structural 
Concrete and Commentary 



Research Objectives
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1. To develop a validated seismic design 

procedure

2. To conduct system-level experimental 

evaluations

3. To validate analytical models and simulation 

tools that predict system behavior

4. To create a Design Procedure Document



Presentation Outline
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• Introduction and Objectives

• Experimental Program

• Specimen 1 Details and Behavior

• Specimen 2 Behavior and Comparisons

• Conclusions



Prototype Structure
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elevation viewplan view

prototype 

core wall

lb / hb = 4.0 (Specimen 1)

= 3.0 (Specimen 2)

• Eight-Story Office Building (coupling degree=30%)

• Designed for Seismic Category D in Los Angeles, CA  

• SS = 1.50;  S1 = 0.60;  CS = 0.136-0.154;  R = 6.0;  CD = 5.0

• Base Moment for Full-Scale Core Wall ~134,000-151,000 kip-ft
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NEES Test Setup at Lehigh Univ. (40%-scale)
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Applied 3rd Floor Drift History

Specimen 1 Specimen 2

ACI ITG 5.1 
validation drift

(3% at roof)

ACI ITG 5.1 
validation drift

(3% at roof)

1.5x

ACI ITG 5.1 loading protocol



Instrumentation

Type Specimen 1 Specimen 2

load cells 29 29

displacement 123 156

rotation 46      46

strain gauges 214 250

TOTAL 412 481

LVDT
plastic

slides

data

acquisition

system
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Digital Image Correlation (DIC)

Type Specimen 1 Specimen 2

2D systems 11 0

3D systems 3 9

TOTAL 14 9

Specimen 1 Specimen 2



Presentation Outline
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• Introduction and Objectives

• Experimental Program

• Specimen 1 Details and Behavior

• Specimen 2 Behavior and Comparisons

• Conclusions



elevation view

cross-section
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Coupling Beam Reinforcement (Specimen 1)
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Wall Pier Reinforcement (Specimen 1)
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Total Base Shear versus 3rd Floor Drift 

(Specimen 1)

validation-level

roof drift = ±3.0%

failure due to

buckling+fracture of 

starter bars at toes

coupling beams

performed well
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Reasons for Starter Bar Fracture
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1. Lap splices above foundation

concentrated
crack at base

lack of cracking
within splice length

wall flange

wall flange
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Specimen 1

Reasons for Starter Bar Fracture
2. Deterioration of concrete at top of foundation

increased
unsupported

length of
starter bars

bottom hoop in pier



Presentation Outline
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• Introduction and Objectives

• Experimental Program

• Specimen 1 Details and Behavior

• Specimen 2 Behavior and Comparisons

• Conclusions



Detail Change in Wall Pier Toes
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Specimen 1

(per ACI 318-11)

Specimen 2

(with debonded bars)

10” unbonded

length



Coupling Beam Changes
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Total Base Shear versus 3rd Floor Drift 

(Specimen 2)

validation-level

roof drift = ±3.0%

strength loss due to

buckling+fracture of 

starter bars at flanges

failure due to

buckling+fracture of 

starter bars at toes

coupling beams

performed well



24

1st Story Damage Progression (Specimen 2)
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Comparison of Wall Pier Toe Damage
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core wall plan view

west 

pier

east

pier

Δ3,max = 3.68%

Specimen 1

Δ3,max = 2.70%
Specimen 2



Coupling Beam Damage
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west 

pier

east

pier

specimen elevation view

θb,max = 10.5%



Beam End Rotations
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Energy Dissipation
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βh = Ad / [(E1+E1)(θ’L1+θ’L2)



Conclusions (PT Coupling Beams)
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• Completed 2 large-scale system-level experimental tests

• Performed as predicted and validated the design approach

• Demonstrated ductile behavior up to 10.5% beam end 

rotation

• Coupling beams provided adequate and stable coupling in 

both specimens (30% coupling)

• Support the classification of unbonded PT coupled wall 

structures as “special” RC shear walls

• Demonstrated intended behavior and advantages of the new 

coupling system

• Fully-PT beams may be preferred over partially-PT beams



Conclusions (Wall Pier Bases)
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• Lap splices of vertical starter bars above foundation resulted 

in concentration of cracking at wall base (with little 

distributed cracking within spliced wall height)

• There was also significant deterioration to concrete at top of 

foundation

• Failure in Specimen 1 occurred due to buckling and 

subsequent fracture of starter bars in wall pier toes

• Unbonding of starter bars in toes improved behavior of 

Specimen 2 by delaying buckling/fracture of starter bars 

• General recommendation for RC shear walls:

 consider lack of cracking over splice length of starter bars

 unbonding of starter bars may delay bar fracture 
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Post-Tensioned Coupling Beams

Specimen 2 Specimen 1
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Load Application
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Detail Change in Wall Pier Corners
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Specimen 1 Specimen 2
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Comparison of Large Drift Response
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Comparison of Wall Pier Corner Damage
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Specimen 1 Movie
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YouTube

https://youtu.be/CzafIPmRgj8?t=18s


3rd Floor Drift Components (Specimen 2)
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Specimen 2



Beam PT Stresses
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Energy Dissipation
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