NHERI Lehigh Project Portfolio

James Ricles NHERI Lehigh Director

NHERI Lehigh EF

NHERI Lehigh EF Capabilities for Natural Hazards Engineering Research

- Large-Scale Hybrid Simulation
- Large-Scale Real-Time Hybrid Simulation
- Large-Scale Real-Time Hybrid Simulation with Multiple Experimental Substructures
- Geographically Distributed Hybrid Simulation
- Geographically Distributed Real-time Hybrid Simulation
- Predefined Load or Displacement (Quasi-Static or Dynamic) Testing
- Dynamic Testing

Example Past Projects

Experiment	Capability
3-story building with piping system	Multi-directional real-time hybrid simulation
Self-centering moment-resisting frame (SC-MRF)	Large-scale hybrid simulation
Self-centering concentrically-braced frame (SC-CBF)	Large-scale hybrid simulation
Real-time testing of structures with dampers	Large-scale real-time hybrid simulation with multiple experimental substructures
Seismic hazard mitigation using passive damper systems	Predefined displacement dynamic testing (for characterization)
Seismic hazard mitigation using passive damper systems (steel MRF building with passive dampers)	Large-scale real-time hybrid simulations
Tsunami-driven debris	Dynamic testing (impact loading)
Post-tensioned coupled shear wall system	Complex large-scale multi-directional predefined force and displacement quasi-static testing
Inertial force-limiting floor anchorage systems for buildings	Predefined displacement dynamic testing (for characterization)
Cross-Laminated Rocking Wall-Floor Diaphragm Systems	Multi-directional quasi-static and hybrid simulation

DESIGNSA

ENGINEERING COMMUNITY

Multi-Directional Large-Scale Real-Time Hybrid Simulation of 3-story Building with Piping System

Multi-Directional Large-Scale Real-Time Hybrid Simulation

Multi-Directional Large-Scale Real-Time Hybrid Simulation of 3-story Building with Piping System

NEES

Self Centering Steel Moment-Resisting Frame (SC-MRF) Systems Princeton, Purdue, Lehigh, NCREE

Large-Scale Hybrid Simulation

Floor 4 Floor 3 ┉┉┉ Floor 2 ┉┉┉ Floor 1 actuator 1/2 story to represent basement 堂 column PT force sensor gap opening sensorbeam keeper detail. PT anchor

6-story : 6 bays @ 30 ft = 180 ft

Plan of Prototype Building

SC-MRF Experimental Substructure (Floor Diaphragm, Gravity System, Mass, Inherent Damping in Analytical Substructure)

ED element

self centering column base

NEES

Self Centering Steel Moment-Resisting Frame (SC-MRF) Systems Princeton, Purdue, Lehigh, NCREE

Large-Scale Hybrid Simulation (SC-MRF)

REAL-TIME MULTI-DIRECTIONAL SIMULATION

П

AT/LSS

UNIVERSITY.

Self Centering Steel Concentrically-Braced Frame (SC-CBF) Systems Princeton, Purdue, Lehigh, NCREE

Large-Scale Hybrid Simulation

6-story : 6 bays @ 30 ft = 180 ft

Plan of Prototype Building

SC-CBF Experimental Substructure (Floor Diaphragm, Gravity System, Mass, Inherent Damping in Analytical Substructure)

Large-Scale Hybrid Simulation (SC-CBF)

Test Bed For Real-Time Testing of Structures with Dampers

Large-Scale Real-Time Hybrid Simulation, Multiple Experimental Substructures

6-story : 6 bays @ 30 ft = 180 ft

Plan of Prototype Building

NEES

Test Bed For Real-Time Testing of Structures with Dampers

Large-Scale Real-Time Hybrid Simulation, Multiple Experimental Substructures

Experimental Substructures (MRF, Floor Diaphragm, Gravity System, Mass, Inherent Damping in Analytical Substructure)

Close up view of damper

Predefined Displacement Dynamic Testing for Characterization

REAL-TIME MULTI-DIRECTIONAL SIMULATIO

ERSITY

LSS

Large-Scale Real-Time Hybrid Simulation

6-story : 6 bays @ 30 ft = 180 ft

Plan of Prototype Building

Elevation of MRF with Passive Dampers

Large-Scale Real-Time Hybrid Simulation

(MRF, Floor Diaphragm, Gravity System, Mass, Inherent Mass in Analytical Substructure)

Large-Scale Real-Time Hybrid Simulation

(Floor Diaphragm, Gravity System, Mass, Inherent Mass in Analytical Substructure)

Experimental Substructure: MRF and Braced Frame with Dampers

Impact Forces from Tsunami-Driven Debris University of Hawaii, Oregon State University, Lehigh

Dynamic Testing (Impact Loading)

Test Setup with Cargo Shipping Container Debris High Speed Video of Impact of Cargo Shipping Container on Structure

Post-Tensioned Coupled Shear Wall System Notre Dame, University of Texas at Tyler

Complex Large-Scale Predefined Multi-Directional Force & Displacement (Quasi-Static) Testing

RC coupled shear wall test specimen with multi-directional loading. Upper 5 stories of 8-story building simulated with vertical force-controlled actuators. 1 displacement-controlled and 10 force-controlled (11 total) used for test.

Joint strains measured by DIC (S. Pakzad)

RC coupled shear wall pier vertical deformation measured by Digital Image Correlation (DIC) (M. McGinnis)

NEES

Post-Tensioned Coupled Shear Wall System Notre Dame, University of Texas at Tyler

Complex Large-Scale Predefined Multi-Directional Force & Displacement (Quasi-Static) Testing

Inertial Force Limiting Floor Anchorage Systems for Buildings University of Arizona, UCSD, Lehigh

Predefined Displacement Dynamic Testing for Characterization

BRB was also Studied

Floor Anchorage Hysteretic Response

Inertial Force Limiting Floor Anchorage Systems Buildings University of Arizona, UCSD, Lehigh

Predefined Displacement Dynamic Testing for Characterization

Inertial Force Limiting Floor Anchorage Systems Buildings University of Arizona, UCSD, Lehigh

Complimentary Shake Table Tests at NHERI UCSD

EQ 14: Berkeley MCE - Floor 4

Project	Capability
Semi-Active Controlled Panel Cladding to Improve the Performance of Buildings under Multiple Hazards: Iowa State University (S. Laflamme)	Real-time hybrid simulation
Passive Controlled Panel Cladding to Improve the Performance of Buildings under Multiple Hazards: Lehigh University (J. Ricles, S. Quiel)	Real-time hybrid simulation
Development and Validation of Resilience-Based Seismic Design Methodology for Tall Wood Buildings (<i>Non-Structural System</i>): University of Nevada, Reno (Keri Ryan)	Complex predefined multi-directional displacement quasi-static testing
Development and Validation of Resilience-Based Seismic Design Methodology for Tall Wood Buildings (<i>Structural System</i>): Lehigh University (J. Ricles, R. Sause)	Complex predefined multi-directional displacement quasi-static testing; multi-directional hybrid simulation
Advancing Knowledge on the Performance of Seismic Collectors in Steel Building Structures: University of Arizona (R. Fleischman (PI) with CM. Uang (UCSD), J. Ricles, R. Sause (Lehigh University))	Complex large-scale predefined force and displacement quasi-static testing
Frame-Spine System with Force-Limiting Connections for Low- Damage Seismic-Resilient Buildings: University Illinois Urbana- Champaign (L. Fahnestock (PI), B. Simpson (OSU), R. Sause, J. Ricles (Lehigh University))	Multi-directional quasi-static and hybrid simulation
Multi-Hazard RTHS Studies of Tall Buildings with Response Modification Devices – NHERI Lehigh Capacity Building (NHERI Lehigh Staff)	Multi-directional Real-time hybrid simulation, online real-time model updating

REAL-TIME MULTI-DIRECTIONAL SIMULATION

Collaborative Research: Semi-Active Controlled Panel Cladding to Improve the Performance of Buildings under Multiple Hazards: (CMMI 1463252) **Iowa State University (Simon Laflamme)** <u>Features Using NHERI</u>

- Project Overview
 - Improve performance of buildings for multiple hazards using <u>semi-active controlled variable friction cladding panel connectors</u>
 - Hazards: Earthquake, Wind (NHERI UF), Blast Loading
- Project Scope
 - Design cladding connectors and control laws
 - Construct prototype connector, perform characterization testing
 - Perform large-scale RTHS to validate numerical models and results (450 data sets from RTHS uploaded to DesignSafe to date)

Semi-Active Controlled Variable Friction Cladding Connector

Lehigh Underlined

Dynamic Numerical Models

Collaborative Research: Semi-Active Controlled Panel Cladding to Improve the Performance of Buildings under Multiple Hazards: (CMMI 1463497) Lehigh University (James Ricles, Spencer Quiel)

Project Overview

Features Using NHERI

- Lehigh Underlined
- Improve performance of buildings under multiple hazards using passive energy dissipating cladding panel connectors
- Hazards: Earthquake, Wind (NHERI UF), Blast Loading
- Project Scope
 - Design prototype buildings of various heights
 - Perform nonlinear time history analysis to assess performance
 - Perform large-scale RTHS to validate numerical models and results (450 data sets from RTHS uploaded to DesignSafe to date)

		uic simulation coordinator so
HAZARD	METHODOLOGY	ord HAZARD LEVELdemand
WIND	Real Time Hybrid Simulation	imposed on the structural 700- and 1700- years return period System per wind speeds & hurricane represented by that imposed
SEISMIC	Real Time Hybrid Simulation	DBE and MCE ground motions during a hybrid simulation.
BLAST	Shock Tube	GSA Medium and Hisplacements are generated for each time step of a simulation by integrating

Test Matrix: Passive Control Connectors

Seismic Hybrid Simulation Experiments

Collaborative Research: Development and Validation of Resilience-Based Seismic Design Methodology for Tall Wood Buildings: (CMMI 1635363) University of Nevada, Reno (Keri Ryan) Features Using NHERI

- Project Overview
 - Develop seismic design methodology for tall wood buildings with high-performance structural and <u>non-structural</u> systems
 - Determine partition wall configurations for large lateral drift with minimized partition damage
- Project Scope
 - Conduct <u>large-scale</u> tests of partition wall systems under <u>in-plane &</u> <u>out-of-plane (bi-directional) loading (& associated vertical motion)</u>
 - Consider different partition slip track and other details to minimize damage

Test Phases	Objectives
Phase I.1-NS	Two independent flat partition walls tested to characterize slip behavior of different slip track details and measure forces in walls under bidirectional loading
Phase I.2-NS	Two independent C-shaped partition walls tested to characterize deformability with different details and measure forces in walls under bidirectional loading
Phase III-NS	Partition walls with dense layout tested under bidirectional loading

Lehigh Underlined

Test setup for partition wall testing

Test plan for partition wall testing

Test setup for partition wall testing

Collaborative Research: Development and Validation of Resilience-Based Seismic Design Methodology for Tall Wood Buildings: (CMMI 1635227) Lehigh University (James Ricles, Richard Sause)

Project Overview

Features Using NHERI Lehigh Underlined

- Develop seismic design methodology for tall wood buildings with high-performance structural and non-structural systems
- Study self-centering rocking cross-laminated timber (SC-CLT) wall with diaphragm and and another local evolution
- Project Scope
 - Conduct <u>large-scale</u> tests <u>out-of-plane</u> (bi-direction)
 - Project is supporting wor table tests (CSM, S. Pei)

Test setup for subassembly testing

Results of test specimen components are used for design of 10-Story CLT building shake table test specimen at University of California San Diego (UCSD) – led by Shiling Pei, University of Colorado School of Mines

Collaborative Research: Developm Based Seismic Design Methodolog 1635227) Lehigh University (Jam

- Project Overview
 - Develop seismic design met high-performance <u>structural</u>
 - Study self-centering rockin wall with diaphragm and gra
- Project Scope
 - Conduct <u>large-scale</u> tests of <u>subassemplies</u>
 - out-of-plane (bi-directior
 - Project is supporting wo table tests (CSM, S. Pein

Test setup for subassembly testing

Test PhasePhase IPhase I.1-SPhase I.2-SPhase IIPhase II.1-SPhase II.2-SPhase II.2-S

rest plan for subassembly testing

Advancing Knowledge on the Performance of Seismic Collectors in Steel Building Structures: (CMMI 1662816) University of Arizona (Robert Fleischman (PI), Chia-Ming Uang, James Ricles, Richard Sause) Features Using NHERI

Project Overview

Lehigh Underlined

Collector Line

Added Mass

n

- Investigate failure-critical yet poorly understood component of steel seismic force resisting system, the seismic collector
- FE analyses, large-scale tests and shake-table tests of floor diaphragms and collectors
- **Project Scope**
 - Conduct large-scale (1000) collector connections (tensi
 - Project is supporting FE me diaphragms, and shake tab

Frame-Spine System with Force-Limiting Connections for Low-Damage Seismic-Resilient Buildings: University of Illinois (Larry Fahnestock (PI), OSU (Barbara Simpson), Lehigh (Richard Sause and James Ricles)

Project Overview

Features Using NHERI Lehigh Underlined

- Develop novel steel frame-spine lateral-force-resisting system with force-limiting connections to protect building from damaging lateral drift and accelerations, providing resilient structural and nonstructural building performance
- FE analyses, <u>large-scale tests</u> and shake-table tests of floor diaphragms and collectors
- Project Scope
 - Conduct <u>large-scale</u> tests on connections
 - Project is supporting FE models at OSU, design studies at UIUC, and shake table tests at E-Defense (NHERI/E-Defense MOU).

Connection Component Testing at NHERI Lehigh

E-Defense Shake Table Testing

Multi-hazard RTHS of a Tall Building

- 40-story (+4 basement) BRBF building in Los Angeles designed by SGH⁽¹⁾ ٠ for PEER Tall Building Initiative case studies – BRBFs with Outriggers
- Objectives of study ٠
 - Improve performance using nonlinear fluid viscous dampers with outriggers
 - Assess performance of structure under multi-hazards using RTHS
- Extend MKR- α integration algorithm and ATS actuator control to wind • natural hazard
- NL Viscous Dampers W -12.2m-12.2m--9.1m--9.1m--9.1m Ν WF steel beams 12 2m Outrigger Outrigger columns 8.2m truss (at W 20th, 30th, 40th stories) 12.2m **Box columns** Ν BRB chevron WF steel column frame (BRBF) Floor Plan ⁽¹⁾ Moehle et al., PEER 2011/05

Outrigge

Al-Subaihawi, S., Kolay, C., Thomas Marullo, Ricles, J. M. and S. E. Quiel, "Assessment of Wind-Induced Vibration Mitigation in a Tall Building with Damped Outriggers Using Real-time Hybrid Simulations," Engineering Structures, submitted for preparation, 2019. Kolay, C., Al-Subaihawi, S., Thomas Marullo, Ricles, J. M. and S. E. Quiel, "Multi-Hazard Real-Time Hybrid Simulation of a Tall Building with Damped Outriggers," International Journal of Lifecycle Performance Engineering, submitted for preparation, 2019.

Online model updating – explicit-based NL Maxwell model •

Multi-Hazard RTHS of Tall Building – EQ & Wind

- Bidirectional EQ ground motions
 - 1989 Loma Prieta EQ Saratoga Aloha Ave Station scaled to MCE (2500 year return period) hazard level
- Bidirectional wind loading
 - Wind speed of 110 mph, 700 MRI
 - Exposure B

Wind Loading Aerodynamic Wind Testing @ FIU WOW

• Aerodynamic wind testing at the NHERI FIU WOW to obtain wind pressure time histories distributed on the building.

Courtesy: Amal Elawady and Arindam Chowdhury, FIU

RTHS Configuration

• Use of:

- > Explicit MKR- α Integration Algorithm
- Explicit Force-based Nonlinear Fiber Element Analytical Substructure
- Adaptive Time Series Compensator for Actuator Control
- Online Model Updating (OMU) explicit-based NL Maxwell model

MKR- α parameter and ATS coefficients

Natural Time Step,		0	ATS Coefficients		Commonto		
Hazard	∆t (sec)	$oldsymbol{ ho}_\infty$	a_{0k}	a_{1k}	a_{2k}	Comments	
Wind	$\frac{6}{1024}$	0.866	Fixed	Adaptive	Fixed	Wind: static component with dynamic gusts - 1 st mode linear response	
EQ	$\frac{6}{1024}$	0.50	Adaptive	Adaptive	Adaptive	EQ: Multi-mode non- linear response	

RTHS Substructures

Analytical Sub. Key features:

- 1317 Nodes
- 2974 Elements
 - > 2411 Nonlinear Explicit Force-based fiber elements
 - > 11 Nonlinear Explicit Maxwell Elements⁽¹⁾ with real-time model updating (dampers placed in each outrigger at 20th, 30th, & 40th floors)
 - 552 Nonlinear truss elements
- Reduced Order Modeling
- Geometric nonlinearities
- Mass
- Inherent damping of building

⁽¹⁾ Al-Subaihawi, S. (2020). *Real-time Hybrid Simulation of Complex Structural Systems Subject to Multi-Hazards*. PhD Dissertation, CEE Dept., Lehigh University.

Real-time Hybrid Simulation with Online Model Updating – Unscented Kalman Filter (UKF)

- <u>Real-time Model Updating</u>
 - > 40th story @ S-E corner: damper modeled physically
 - Remaining 11 dampers at 20th, 30th, and 40th stories modeled numerically with real-time model updating
 - Use real-time model updating via <u>Unscented Kalman</u> <u>Filter (UFK)</u> to numerically model the 11 dampers
 - Development of explicit, non-iterative Nonlinear Maxwell Damper Model for real-time hybrid simulation
 - Development of methodology to tune and implement the UKF for real-time identification of nonlinear viscous dampers

Al-Subaihawi, S. (2020). *Real-time Hybrid Simulation of Complex Structural Systems Subject to Multi-Hazards*. PhD Dissertation, CEE Dept., Lehigh University.

Real-time Hybrid Simulation with Online Model Updating – Unscented Kalman Filter (UKF)

3-D Real-time Hybrid Simulation 1989 Loma Prieta EQ Bidirectional Ground Motions Scaled to MCE

Motions scaled by factor of 5 in animation

Al-Subaihawi, S., Marullo, T., Cao, L., Kolay, C. and J.M. Ricles, (2019) "3D Multi-Hazard Real-Time Hybrid Simulation Studies of a Tall Building with Damped Outriggers".

REHIGH RTAD NHER

3-D Real-time Hybrid Simulation 110 mph, 700 MRI Wind Storm (EW Windward Direction)

Al-Subaihawi, S., Marullo, T., Cao, L., Kolay, C. and J.M. Ricles, (2019) "3D Multi-Hazard Real-Time Hybrid Simulation Studies of a Tall Building with Damped Outriggers".

3-D RTHS Results: Roof RMS Lateral Accelerations East to West 110 mph, 700 Year MRI Wind

RMS Roof Accelerations	(mG)

Floor	No Dampers		With Da	ampers
	EW	NS	EW	NS
40	7.0	31.5	6.9	16.2

Peak Roof Accelerations (mG)

Floor	No Dampers		With Da	ampers
	EW	NS	EW	NS
40	28.8	90.3	25.8	59.0

Dampers added to outriggers at 20th, 30th, and 40th stories:

- RMS Acceleration: 2% reduction in EW, 49% reduction in NS
- Peak Acceleration: 10% reduction in EW, 35% reduction in NS

Note: Outrigger frames are in NS direction

3-D RTHS Results: BRB Maximum Ductility 1989 Loma Prieta EQ Scaled to MCE

BRB Maximum Ductility Demand $(\Delta_{b}^{max}/\Delta_{y})$				
Story	No Da	mpers	With Da	ampers
	EW	NS	EW	NS
1	3.2	3.0	3.2	2.1

Dampers added to outriggers at 20th, 30th, and 40th stories:

 BRB ductility demand: Minimal reduction in EW, 30% reduction in NS Note: Outrigger frames are in NS direction

Damper Hysteretic Response – 700 MRI Wind

40th Story @ SE: Experimental Substructure All other dampers: Real-time Model Updating is UKF

AT/LSS

REAL-TIME MULTI-DIRECTIONAL SIMULATION

UNI

VER

SITY.

NHER

Real-Time Multi-Directional Testing Facility

Damper Hysteretic Response – EQ MCE Level

40th Story @ SE: Experimental Substructure All other dampers: Real-time Model Updating is UKF

LSS

UNI

VERSITY.

Actuator Control – Loma Prieta EQ @ MCE RTHS

Synchronized Subspace Plots: Target vs. Measured Displacement

<u>Time History of Adaptive Coefficients – 40th Story Damper</u>

$$A_k^{(j)} \approx \frac{1}{a_{0k}^{(j)}} = 0.982 \sim 1.01$$

$$\frac{\text{Delay Compensation}}{\tau_k^{(j)} \approx \frac{a_{1k}^{(j)}}{a_{0k}^{(j)}} = 16 \sim 53 \text{ msec}}$$

NHER

Real-Time Multi-Directional Testing Facility

Actuator Control – 700 MRI Wind RTHS

REAL-TIME MULTI-DIRECTIONAL SIMULATIO

Synchronized Subspace Plots: Target vs. Measured Displacement

<u>Time History of Adaptive Coefficients – 40th Story Damper</u>

Real-Time Multi-Directional Testing Facility

$$A_k^{(j)} \approx \frac{1}{a_{0k}^{(j)}} = 1.0$$

Delay Compensation

$$\pi_k^{(j)} \approx \frac{a_{1k}^{(j)}}{a_{0k}^{(j)}} = 15 \sim 32 \text{ msec}$$

Thank You

