Overview of Large-Scale Damper Characterization and RTHS Demonstration

Chinmoy Kolay
Research Engineer

Thomas Marullo
IT System Administrator

NHERI Lehigh EF
Outline

- Large-scale nonlinear viscous damper characterization test
- RTHS implementation challenges and NHERI Lehigh solutions
- RTHS of a RC building with nonlinear viscous damper
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1-RED</td>
<td>Control Room</td>
<td>Lab Floor</td>
<td>Lab Tour</td>
<td></td>
</tr>
<tr>
<td>2-BLUE</td>
<td>Lab Floor</td>
<td>Control Room</td>
<td>Lab Tour</td>
<td></td>
</tr>
<tr>
<td>3-GREEN</td>
<td>Lab Tour</td>
<td>Control Room</td>
<td>Lab Floor</td>
<td></td>
</tr>
<tr>
<td>4-YELLOW</td>
<td>Lab Tour</td>
<td>Lab Floor</td>
<td>Control Room</td>
<td></td>
</tr>
</tbody>
</table>

Back of your name tag has a group label and color
Outline

- Large-scale nonlinear viscous damper characterization test
- RTHS challenges and NHERI Lehigh solutions
- RTHS of a RC building with nonlinear viscous damper
Damper Characterization Test

Nonlinear fluid viscous damper

- Make: Taylor Devices Inc.
- Nominal force capacity 600 kN
- Max stroke \(\pm 125 \) mm
- Theoretical force-velocity:
 \[
 f_D = C_D \text{sgn}(\dot{u}_D) |\dot{u}_D|^\alpha
 \]
- Manufacturer provided
 \[C_D = 773 \text{ kN.} \left(\frac{s}{m} \right)^\alpha \text{ and } \alpha = 0.4 \]
- Operating temperature:
 \(-6.7^\circ C \text{ to } +54.4^\circ C (+20^\circ F \text{ to } +130^\circ F)\)
Procedure for Damper Characterization

1. Develop a damper model
2. Assign model parameters
3. Predict model response
4. Calculate error between model and measured experimental data
5. Revise parameters to minimize error
6. Predefined displacement tests
Input Displacement and Test Matrix

<table>
<thead>
<tr>
<th>Amplitude (mm (in.))</th>
<th>Frequency (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.25</td>
</tr>
<tr>
<td>76.2 (3.0)</td>
<td>119.7 (4.7)</td>
</tr>
</tbody>
</table>

Numbers in the cells are max velocities in mm/s (in/s)
Actuator Power Curve

Power curve for 1700 kN actuators at 3000 psi

- 1 valve
- 2 valves
- 3 valves
- Max demand

<table>
<thead>
<tr>
<th>Force (kN)</th>
<th>Velocity (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.5</td>
</tr>
<tr>
<td>500</td>
<td>1.0</td>
</tr>
<tr>
<td>1000</td>
<td>0.5</td>
</tr>
<tr>
<td>1500</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Force (kN) vs. Velocity (m/s) graph showing different valve configurations.
Damper Characterization Test Data
Nonlinear Maxwell Damper Model

- Damper shows strong frequency dependent behavior
- Usually modeled using a nonlinear Maxwell model

Total damper deformation: \(u_D = u_k + u_c \)
Total damper velocity: \(\dot{u}_D = \dot{u}_k + \dot{u}_c \)
Damper force:
\[
 f_D = f_K = K_D u_k \implies \dot{u}_K = \frac{\dot{f}_D}{K_D}
\]
\[
 f_D = f_C = C_D \text{sgn}(\dot{u}_C)|\dot{u}_C|^\alpha \implies \dot{u}_C = \left| \frac{f_D}{C_D} \right|^\frac{1}{\alpha} \text{sgn}(f_D)
\]

Model parameters: \(K_D, C_D, \text{and } \alpha \)

Governing equation (nonlinear ODE)
\[
 \dot{f}_D + K_D \left| \frac{f_D}{C_D} \right|^\frac{1}{\alpha} \text{sgn}(f_D) = K_D \dot{u}_D
\]
Solution of nonlinear ODE

Governing equation (nonlinear ODE): \[\dot{f}_D + K_D \left| \frac{f_D}{C_D} \right|^{\frac{1}{\alpha}} \text{sgn}(f_D) = K_D \dot{u}_D \]

Simulink model for solution of the nonlinear ODE

Solver: variable-step Dormand-Prince solver (ode45) which belongs to 5th order Runga-Kutta family
Determination of Model Parameters

- Identify K_D, C_D, and α so that the error between the model prediction and experimental data are minimized.

- We use particle swarm optimization (PSO) algorithm (Kennedy and Eberhart, 1995; Ye and Wang, 2007; Chae, 2011).
 - The algorithm in Matlab script is available for users.

- Objective function: Normalized root mean square error

$$F^{obj}(K_D, C_D, \alpha) = \sqrt{\frac{\sum_{n=1}^{N} (f^e_D - f^p_D)^2}{\sum_{n=1}^{N} (f^e_D)^2}}$$

- f^e_D and f^p_D are experimental and predicted damper forces, respectively.

- N is the total number of samples.
Measured vs Model Prediction
Outline

- Large-scale nonlinear viscous damper characterization test
- RTHS implementation challenges and NHERI Lehigh solutions
- RTHS of a RC building with nonlinear viscous damper
Introduction: RTHS

Ground acceleration

Integration of equations of motion

\[M\dddot{x}_{n+1} + C\dot{x}_{n+1} + R^n_{n+1} + R^e_{n+1} = F_{n+1} \]

Ramp generator and kinematic transformation for each actuator DOF

Servo controller

ATS compensator

Experimental substructure

Nonlinear damper

Linear damper

FE model

Real time response

Simulation coordinator

RTHS: Implementation issues and challenges

Simulation coordinator

- Numerical integration algorithm
 - Accurate
 - Explicit
 - Unconditionally stable
 - Dissipative
- Fast communication

Experimental substructure

- Large capacity hydraulic system and dynamic actuators required
- Actuator kinematic compensation
- Robust control of dynamic actuators for large-scale structures

Analytical substructure

- Fast and accurate state determination procedure for complex structures
RTHS: Implementation issues and challenges

Simulation coordinator

- Numerical integration algorithm
 - Accurate
 - Explicit
 - Unconditionally stable
 - Dissipative
- Fast communication

NHERI Lehigh Solutions

- Various explicit model-based algorithms
- RTMD real-time integrated control architecture
Simulink Block Diagram for E-\(\alpha\) Method

Block 1 & 5 runs at \(\delta t = \frac{1}{1024}\) sec

Others run at \(\Delta t = n\delta t = \frac{4}{1024}\) sec (say)
RTHS: Implementation issues and challenges

Analytical substructure

- Fast and accurate state determination procedure

NHERI Lehigh Solutions

- HybridFEM
- Multi-grid real-time hybrid simulation
Lehigh HybridFEM

NHERI Lehigh Solutions to RTHS Challenges

- MATLAB and SIMULINK based computational modeling and simulation coordinator software

- Run Modes
 - MATLAB script for numerical simulation
 - SIMULINK modeling for Real-Time Hybrid simulation with experimental elements via xPCs, and hydraulics-off for training and validation of user algorithms.

- User’s Manual for training

Lehigh HybridFEM

Configuration Options:

• Coordinate system of nodes
• Boundary, constraint and restraint conditions
• Elements
 • Elastic beam-column
 • Elastic spring
 • Inelastic beam-column stress resultant element
 • Non-linear spring
 • Displacement-based NL beam-column fiber element
 • Force-based beam NL column fiber element
• Zero-length
• 2D NL planar panel zone
• Elastic beam-column element with geometric stiffness
• Geometric nonlinearities
• Steel wide flange sections (link to AISC shapes Database)
• Reinforced concrete sections
• Structural mass & inherent damping properties
• Adaptable integration methods

• Materials
 • Elastic
 • Bilinear elasto-plastic
 • Hysteretic
 • Bouc-Wen
 • Trilinear
 • Stiffness degrading
 • Concrete
 • Steel
RTHS: Implementation issues and challenges

Experimental substructure

- Large capacity hydraulic system and dynamic actuators required
- Actuator kinematic compensation
- Robust control of dynamic actuators for large-scale structures

NHERI Lehigh Solutions

- Large hydraulic power supply system
- 5 large capacity dynamic actuators
- Development of actuator kinematic compensation
- Servo hydraulic actuator control: Adaptive Time Series Compensator (ATS)
Servo Hydraulic Actuator Control

- Nonlinear servo-valve dynamics
- Nonlinear actuator fluid dynamics
- Test specimen material and geometric nonlinearities
- Slop, misalignment, deformations in test setup

It is important to compensate

- Variable amplitude error and time delay in measured specimen displacement

- Inaccurate structural response
- Delayed restoring force adds energy into the system (negative damping)
- Can cause instability
Servo Hydraulic Actuator Control

- Actuator delay compensation
 - Inverse compensation (Chen 2007)
 - Adaptive inverse compensation (AIC, Chen and Ricles 2010)
 - Adaptive time series (ATS) compensator (Chae et al. 2013)

Adaptive Time Series (ATS) Compensator

2nd order ATS compensator

\[u^c_k = a_{0k} x^t_k + a_{jk} \dot{x}^t_k + a_{2k} \ddot{x}^t_k \]

- \(u^c_k \): compensated input displacement into actuator
- \(x^t_k \): target specimen displacement
- \(a_{jk} \): adaptive coefficients

Adaptive coefficients are optimally updated to minimize the error between the specimen target and measured displacements using the least squares method.

\[
A = \left(X_m^T X_m \right)^{-1} X_m^T U_c
\]

\[
A = [a_{0k} \ a_{1k} \ldots a_{nk}]^T
\]

\[
X_m = [x^m \ \dot{x}^m \ldots \frac{d^n}{dt^n}(x^m)]^T
\]

\[
x^m = [x^m_1 \ x^m_2 \ldots x^m_q]^T
\]

(Output (measured) specimen displacement history)

\[
U_c = [u^c_1 \ u^c_2 \ldots u^c_q]^T
\]

(Input actuator displacement history)

Outline

- Large-scale nonlinear viscous damper characterization test
- RTHS implementation challenges and NHERI Lehigh solutions
- RTHS of a RC building with nonlinear viscous damper
RTHS configuration

- 1999 Chi-Chi EQ record scaled to MCE hazard level
- Time step: $\Delta t = \frac{3}{1024} \text{ s}$
RTHS configuration

- Analytical substructure modeled using force-based elements with fixed number of iterations and linear elastic elements
- Mass, tangent, and initial stiffness proportional inherent damping
- Time step: $\Delta t = \frac{3}{1024}$ s
- MKR-α method (parameter ρ^*)
 - Model-based integration parameters (α_1, α_2, α_3) determined from characterization test data
- ATS Compensator for adaptive time delay and amplitude compensation
Explicit Modified KR-\(\alpha\) (MKR-\(\alpha\)) Method

Velocity update:
\[
\dot{X}_{n+1} = \dot{X}_n + \Delta t \alpha_1 \ddot{X}_n
\]

Displacement update:
\[
X_{n+1} = X_n + \Delta t \dot{X}_n + \Delta t^2 \alpha_2 \ddot{X}_n
\]

Weighted equations of motion:
\[
M \dddot{X}_{n+1} + C \dot{X}_{n+1 - \alpha_f} + K X_{n+1 - \alpha_f} = F_{n+1 - \alpha_f}
\]

where,
\[
\dddot{X}_{n+1} = (I - \alpha_3) \dddot{X}_{n+1} + \alpha_3 \dddot{X}_n
\]
\[
\dot{X}_{n+1 - \alpha_f} = (1 - \alpha_f) \dot{X}_{n+1} + \alpha_f \dot{X}_n
\]
\[
X_{n+1 - \alpha_f} = (1 - \alpha_f) X_{n+1} + \alpha_f X_n
\]
\[
F_{n+1 - \alpha_f} = (1 - \alpha_f) F_{n+1} + \alpha_f F_n
\]

Initial acceleration:
\[
M \dddot{X}_0 = [F_0 - C \dot{X}_0 - K X_0]
\]

Integration Parameters

- **Parameter controlling numerical energy dissipation**
 - \(\rho_\infty = \) spectral radius when \(\Omega = \omega \Delta t \to \infty \)
 - varies in the range \(0 \leq \rho_\infty \leq 1 \)
 - \(\rho_\infty = 1: \) No numerical energy dissipation
 - \(\rho_\infty = 0: \) Asymptotic annihilation

- **Scalar integration parameters:**
 - \(\alpha_m = \frac{2\rho_\infty^3 + \rho_\infty^2 - 1}{\rho_\infty^3 + \rho_\infty^2 + \rho_\infty + 1}; \quad \alpha_f = \frac{\rho_\infty}{\rho_\infty + 1}; \quad \gamma = \frac{1}{2} - \alpha_m + \alpha_f; \quad \beta = \frac{1}{2} \left(\frac{1}{2} + \gamma \right) \)

- **Model-based integration parameter matrices:**
 - \(\alpha_1 = \left[M_{IP} + \gamma \Delta t C_{IP} + \beta \Delta t^2 K_{IP} \right]^{-1} M_{IP}; \quad \alpha_2 = \left(\frac{1}{2} + \gamma \right) \alpha_1 \)
 - \(\alpha_3 = \left[M_{IP} + \gamma \Delta t C_{IP} + \beta \Delta t^2 K_{IP} \right]^{-1} \left[\alpha_m M_{IP} + \alpha_f \gamma \Delta t C_{IP} + \alpha_f \beta \Delta t^2 K_{IP} \right] \)
 - \(M_{IP}, C_{IP}, \) and \(K_{IP} \) need to be formed based on the hybrid system

RTHS: Model-Based Integration Parameters

- Model-based integration parameters (α_1, α_2, and α_3) require M_{IP}, C_{IP}, and K_{IP}

- For the present study
 - $M_{IP} = M =$ analytically modeled mass matrix
 - Experimental substructure mass is small
 - $C_{IP} = (a_0 M + a_1 K^a_l) + C_{eq}$
 - $K^a_l =$ initial stiffness matrix of analytical substructure
 - $C_{eq} =$ equivalent damping matrix of experimental substructure
 - a_0 and a_1 are Rayleigh damping coefficients
 - $K_{IP} = K^a_l + K_{eq}^e$
 - $K_{eq}^e =$ equivalent stiffness matrix of experimental substructure

- How can we determine C_{eq}^e and K_{eq}^e?
Model-based integration parameters

Linearization of nonlinear Maxwell model at a small velocity (0.5 in/s) and determination of frequency dependent equivalent Kelvin-Voigt model parameters

What is the value of $\tilde{\omega}$?
RTHS Test Matrix

<table>
<thead>
<tr>
<th>Test No.</th>
<th>$maxIter$</th>
<th>$\tilde{\omega}$</th>
<th>ρ_∞^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.75</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0.75</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>$\frac{\omega_1}{2}$</td>
<td>0.75</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>ω_1</td>
<td>0</td>
</tr>
</tbody>
</table>
RTHS Test Data
References

Thank you