Seismic Evaluation and Retrofit of Concentrically Braced Frames

Jeffrey Berman, Dawn Lehman, and Charles RoederAndrew Sen (UW) Ryan Ballard (KPFF), Dan Sloat (Degenkolb) & Marsha Swatosh (CPL)

Lehigh NHERI Workshop 2016

NCBFs IN THE FIELD

Research Motivation

NSF and AISC Funded Studies

- > Expectation of poor seismic behavior but not well understood
- > Substantial building stock of NCBFs
- > Shifting cultural expectations of seismic performance, resiliency
- > Limited retrofit guidance

Large-Scale Experiments Were Critical

Single-story, single-bay tests at UW to explore connection and brace behavior

Two-story at NEES@Berkeley: weak-axis columns and weak-beam chevron frames

Two-story tests at NCREE: composite beams in weak-beam chevron frames

Evolution of CBF Design

- Pre-1988: Non-Seismic (NCBFs)
- **1988-1997**: CBFs capacity based design
- **1997-Today**: Special (SCBF) additional detailing for regions of high seismicity
- 2008: Introduction of Balanced Design Procedure (BDP) for improved performance of SCBFs

"Current" SCBF Design

NCBF Design (pre-1988)

Criterion		Requirements	
Brace	Brace Slenderness	KL/r < 100	
	Brace Compactness	Seismically Compact	
	Brace End Rotation Clearance	Required	
Connection	GP-to-Frame Connection Design	Design for Expected Brace Capacity	
	Weld Metal Toughness	Minimum Toughness for Demand Critical Welds	
Frame	Framing Member Compactness	Seismically Compact	
	Framing Member Design	Design for Expected Brace Capacity	

Criterion		Requirements	
Brace	Brace Slenderness	No Limit	
	Brace Compactness	No Limit	
	Brace End Rotation Clearance	No Limit	
ection	GP-to-Frame Connection Design	Design for Seismic Loads	
Conne	Weld Metal Toughness	No Limit	
Frame	Framing Member Compactness	No Limit	
	Framing Member Design	Design for Seismic Loads	

Fracture at brace midspan

Failure Modes

SCBF Design with BDP

	Criterion	Requirements	
	Brace Slenderness	KL/r < 100	
Brace	Brace Compactness	Seismically Compact	PFM
	Brace End Rotation Clearance	Required	PYM SYM
ection	GP-to-Frame Connection Design	Design for Yield Strength of GP	й
Conne	Weld Metal Toughness	Minimum Toughness for Demand Critical Welds	Deformation
Frame	Framing Member Compactness	Seismically Compact	
	Framing Member Design	Design for Expected Brace Capacity	UNIVERSITY of WASHINGTON

Evaluation and Retrofit Methodology

Based on Demand/Capacity Ratios (DCRs) and Balanced Design

Step 1: Evaluate Building

W

Background: Infrastructure Review (Sloat 2014)

Building Survey

- 12 Buildings; 8 Connection Types
- Designed Before 1988
- Regions of High Seismicity

Survey Results

- Non-Compact Braces
- Connection Deficiencies
- System Level Deficiencies

Evaluate the Frame Demand-to-Capacity Ratios (DCRs)

Evaluate the System

VERTICAL IRREGULARITIES

YIELDING-BEAM MECHANISM

Step 2: Identify Deficiencies

Evaluate the Connection: Compute Demand/Capacity Ratios

		AISC Design	Balanced Design	
	Limit State	Resistance (ØR _n)	Resistance (βR _n)	
۽	Whitmore Yielding	$\phi R_y F_y B_w t_p$	$\beta R_y F_y B_w t_p$	
Med	Bolt Bearing	$\phi(1.5L_ct_pF_u \le 3.0d_ht_pF_u) \ge UFM$	$\beta \left(1.5L_c t_p F_u \le 3.0d_h t_p F_u \right) \ge R_y F_y l_b t_p$	
ield	GP Buckling	$\phi B_w t_p F_{cr}$	$\beta B_w t_p F_{cr}$	
7	Prying Action	$\phi \sqrt{4Bb'/pF_u} \ge t_p$		
	Brace Net Section Fracture	$\phi UR_{tb}F_{ub}A_{nb}$	$\beta U R_{tb} F_{ub} A_{nb}$	
	GP-to-Brace Weld	$\phi(0.6)F_{EXX}N_wL_c(0.707)w_{br}$	$\beta(0.6)F_{EXX}N_wL_c(0.707)w_{br}$	
ure Modes	Brace Block Shear	$\phi(0.6F_yA_{gv} + U_{bs}F_uA_{nt})$	$\beta(0.6F_uA_{gv}+U_{bs}F_uA_{nt})$	
	GP Block Shear	$min\begin{cases} \phi(0.6F_uA_{nv} + U_{bs}F_uA_{nt})\\ \phi(0.6F_yA_{gv} + U_{bs}F_uA_{nt}) \end{cases}$	$\beta(0.6)(1/2)(R_yF_y+R_tF_u)A_{nv}$	
Fail	Whitmore Fracture	$\phi R_t F_u B_w t_p$	$\beta R_t F_u B_w t_p$	
	Interface Welds	$\phi c C_1(16w_b) t_w \ge UFM$	$2(1.5)\beta(0.6)F_{EXX}(0.707)w_b \ge R_y F_y t_p$	
	Bolt Rupture	$\phi cF_{nv} \ge UFM$	$F_{nv}\pi(d_b/2)^2 \ge \left(1.5L_ct_pF_u \le 3.0d_ht_pF_u\right)$	
netric nits	Brace Compactness	$b/t \ge 0.55\sqrt{E/(R_yF_y)}$	$b/t \ge 0.55\sqrt{E/(R_yF_y)}$	
Geom Lim	Slenderness	KL/r < 100	KL/r < 100	

Identifying Deficiencies

Yielding Mechanisms	AISC DCR	BDP DCR
Whitmore Yielding	0.8	0.7
GP Bolt Bearing	0.9	1.3
Beam Bolt Bearing	1.3	1.5
Prying Action	3.6	
Failure Modes	AISC DCR	BDP DCR
GP-Brace Weld Fracture	0.7	0.7
Whitmore Fracture	0.6	0.5
GP Block Shear	0.7	0.6
GP-Beam Weld Fracture	0.5	1.1
GP Bolt Rupture	0.6	1.5
Geometric Limits		
Brace Compactness Ratio	0.9	92
Slenderness	89).4

Experimental Setup

PFM

Evaluation of NCBFs

Identify Deficiencies: Non-Compact Braces

DCR = 2.3

Identify Deficiencies: Deficient GP-to-Brace Weld

Identify Deficiencies: Deficient Bolts

Interstory Drift (%)

Identify Deficiencies: Deficient Shear Plate Weld

Identify Deficiencies: Deficient GP-to-Beam Weld

Step 3: Determine Frame Performance

Determine Frame Performance Type 1 Yield and Failure Hierarchy

Determine Frame Performance Type 2 Yield and Failure Hierarchy

Determine Frame Performance Type 3 Yield and Failure Hierarchy

Step 4: Select Retrofit Strategy

Retrofit Prioritization

Priority	Deficiency	Deficiency severity
Lliah	Locally slender HSS braces	> 1.5
півц	Brace-to-gusset plate welds	> 1.3
Moderate	Gusset plate interface welds	> 0.75 (BDP)
	Gusset plate clearance	< 2t _p elliptical
	Gusset plate clearance	< 4t _p elliptical
Low	Shear plate bolts	> 1.2
	Beam yielding (chevron)	> 2.5
Minimal	Whitmore yielding	> 1.3

Tested Retrofit Strategies

Deficiency	Retrofit objective	Retrofit strategy	
Brace local	Improve brace deformation capacity	Replace brace (BRB, HSS, In-plane)	
slenderness		Fill brace with concrete	
Brace-to-gusset weld	Develop brace capacity (Address in brace replacement)		
	Mitigate demands	Replace brace (in-plane buckling)	
Gusset plate		Replace brace (BRB)	
	Reinforce	Add bolts	
		Overlay weld	

UNIVERSITY of WASHINGTON

LFM

PFM

Bolted-Bolted Split Double Angles w/ Weld Overlay

Bolted-Bolted Split Double Angles w/ Weld Overlay

Yielding Mechanisms	AISC DCR	BDP DCR
Whitmore Yielding	0.8	0.7
GP Bolt Bearing	0.9	1.3
Beam Bolt Bearing	1.3	1.5
Prying Action	3.6	
Failure Modes	AISC DCR	BDP DCR
GP-Brace Weld Fracture	0.7	0.7
Whitmore Fracture	0.6	0.5
GP Block Shear	0.7	0.6
GP-Beam Weld Fracture	0.3	0.7
GP Bolt Rupture	0.4	0.6
Geometric Limits		
Brace Compactness Ratio	0.92	
Slenderness	89	9.4

Bolted-Bolted Split Double Angles w/ Weld Overlay

Concluding Thoughts

- > Large-scale testing critical to determine yield mechanisms and failure modes.
- > Analysis alone would be insufficient
- > New design and retrofit should maximize yielding by balancing the brace capacity & secondary yield mechanisms with undesired failure modes.
- > NCBFs have low drift capacity because of non-compliant braces. Advised retrofit: brace replacement (HSS, BRBs). Size brace for connection DCRs < 1.</p>
- > Response of connection can determine the seismic performance of the retrofitted system. In particular welded (E70T-11) connections sustain early fracture. Weld overlays and supplemental bolts are valid retrofit strategies.

Concrete-Filled Brace

FILL BRACE WITH CONCRETE & ADD BOLTS to WELDED SHEAR PLATE

Replace with BRB

Note that beam-to-gusset weld still vulnerable

