Laboratory Exercises: Characterization Testing of a Banded Rotatory Friction Damper

Liang Cao, Ph.D NHERI Lehigh Research Scientist Lehigh University

Lehigh Small-Scale Structural Dynamics Testing Facility

Three MTS Actuators:

- > 2 Model 244.21G2
- 1 Model 244.20G2S

Actuator Specifications

	244.21G2	244.20G2s
Max Force	50 kN (11 kips)	82 kN (18.5 kips)
Max displacement	±254 mm (±10 in)	±177 mm (±7 in)
Max velocity	0.74 m/s (29 in/s)	0.43 m/s (51 in/s)
Servo Valve	30 gpm	90 gpm

Banded Rotatory Friction Damper (BRFD)

Damper Specifications

- 45 kN (10 kips) force capacity
- 305 mm (12 in) diameter drum
- Mechanically reliable & robust
- US Patent: # 9,896,836

Banded Rotary Friction Damper (BRFD)

Banded Rotatory Friction Damper (BRFD)

Double wrap band brake

Banded Rotary Friction Damper (BRFD)

(a) Schematic of side view

(b) Friction mechanism

Placement of BRFD in Building

(a) Building Plan, and (b) Elevation

(b) Toggle

Two Possible Configurations for BRFD Installment

Procedure for Damper Characterization

Characterization Test of BRFD Input Displacement and Test Matrix

Numbers in the cells are max velocities in mm/s (in/s)

Characterization Test of BRFD – Test Setup

Dynamic Test Results

- Amplitude : 1 inch
- Frequency : 0.1 Hz and 0.5 Hz
- Applied force, F_{applied}: 50, 65 and 80 lb

Force amplification

 $(F_{damper}/F_{applied}) = 112$

Computational Model for BRFD

LuGre friction model

 $\mathsf{F}_{\mathsf{friction}} = \sigma_0 \mathsf{z} + \sigma_1 \dot{\mathsf{z}} + \sigma_2 \dot{\mathsf{x}}$

$$\dot{z} = \dot{x} - \sigma_0 \frac{|\dot{x}|}{g(\dot{x})} z$$
$$g(\dot{x}) = F_c + (F_s - F_c) e^{-(\frac{\dot{x}}{\dot{x}_s}) z}$$

- $-\sigma_0, \sigma_1$ and σ_2 are constants
- z is an evolutionary variable and x is displacement
- F_c is kinetic frictional force and F_s is static frictional force
- \dot{x}_s is constant modeling the Stribeck velocity $F_{damper} = \frac{F_{friction}r}{r_b}$

where r_b is the distance from the center of the drum to the brace and r is the drum radius

Cao, L., Downey, A., Laflamme, S., Taylor, D. and Ricles, J., (2015). Variable friction device for structural control based on duo-servo vehicle brake: Modeling and experimental validation, Journal of Sound and Vibration 348 41-56 doi:10.1016/j.jsv.2015.03.011.
Downey, A., Cao, L., Laflamme, S., Taylor, D. and Ricles, J., (2016). High capacity variable friction damper based on band brake technology. Engineering Structures, 113, pp.287-298. doi:10.1016/j.engstruct.2016.01.035

3 Stage Dynamic Model for BRFD

 x_0 is the location of new stage and γ_1 , γ_2 are constants

$$F_{\text{friction}} = (1 - m(\mathbf{x})) \times F_{i} + m(\mathbf{x}) \times F_{j}$$

Cao, L., Downey, A., Laflamme, S., Taylor, D. and Ricles, J., (2015). Variable friction device for structural control based on duo-servo vehicle brake: Modeling and experimental validation, Journal of Sound and Vibration 348 41-56 doi:10.1016/j.jsv.2015.03.011.

Damper Characterization Results

Imperial Valley earthquake with F_{applied}= 30 lb

