Grand Challenge: Resilience of East Coast Infrastructure

Larry Fahnestock, PhD, PE Professor, CEE *University of Illinois at Urbana-Champaign*

September 24, 2019 *NHERI Lehigh Researcher Workshop*

Resilience

• The ability to recover quickly from a difficulty or disturbance

West Coast Perspective

- Ductile structural systems that are rigorously designed for seismic effects
- Public awareness of earthquake hazard supports initial investment in life safety

Borello and Fahnestock (2017), *Journal of Structural Engineering*, 143 (10): 04017133.

West Coast Perspective

• Growing understanding of the need for even more investment toward resilience (high performance systems)

Miller, Fahnestock and Eatherton (2012), *Engineering Structures*, 40: 288-298.

East Coast / Central US Perspective

- Economical, efficient structural systems
- Gravity and wind are primary considerations
- Seismic is part of the design framework, but response is not well understood

Bradley, Fahnestock, Hines and Sizemore (2017), *Journal of Structural Engineering*, 143 (6): 04017029.

East Coast / Central US Perspective

- Structural systems are likely to exhibit brittle limit states
- Little public support for additional investment in seismic resilience

Bradley, Fahnestock, Hines and Sizemore (2017), *Journal of Structural Engineering*, 143 (6): 04017029.

East Coast / Central US Seismic Hazard

(USGS)

East Coast / Central US Earthquakes

Magnitude: 5.3 Depth: 2.5 miles Intensity: VI

Magnitude: 5.8 Depth: 3.7 miles Intensity: VI

Colorado Virginia Oklahoma

USGS ShakeMap: OKLAHOMA Sun Nov 6, 2011 03:53:10 GMT M 5.6 N35.54 W96.75 Depth: 5.0km ID:b0006klz

Magnitude: 5.6 Depth: 3.1 miles Intensity: VI

Seismic Resilience

- How should resilience objectives vary for different seismic hazard characteristics?
	- High hazard, sort recurrence
		- Past to Current life safety / collapse prevention
		- Current to Future rapid return to occupancy
	- Moderate hazard, long recurrence
		- Current uncertain
		- Future life safety / collapse prevention / functionality for emergency response

East Coast Seismic Resilience Research

- 1. Buildings: Reserve Capacity
- 2. Bridges: Quasi-isolation

- Theme: employ existing systems and components, with modest modifications to enhance seismic performance
- Approach: full-scale testing and extensive numerical simulations

East Coast Seismic Resilience Research – Project 1

NEESR: Reserve Capacity in New and Existing Low-Ductility Braced Frames

Funding: NSF (CMMI-1207976), AISC Full-Scale Testing: NEES@Lehigh Numerical Simulations: XSEDE

NEESR: Reserve Capacity in New and Existing Low-Ductility Braced Frames

- University of Illinois at Urbana-Champaign
	- Larry Fahnestock (PI)
	- Josh Sizemore (RA, former PhD student)
- Tufts University / LeMessurier Consultants
	- Eric Hines (Co-PI)
	- Cameron Bradley (RA, former PhD student)
	- Jessalyn Nelson (RA, former MS student)
- École Polytechnique Montréal
	- Robert Tremblay (Co-PI)
	- Thierry Beland (RA, PhD student)
	- Ali Davaran (former research scientist)

LeMessurier.

East Coast / Central US Braced Frames

- Assume pin connections
- **Statically** determinate
- Stiff and efficient
- No seismic detailing
- $R = 3$

- Seismic design using high-ductility structural systems is not feasible
- $R = 3$ concentrically-braced frames (CBF) systems are prevalent in moderate seismic regions

East Coast / Central US Braced Frames

• How does a typical braced frame (*R* = 3) respond when it is loaded beyond the elastic range of behavior?

CBF Seismic Performance

- CBFs, which were viewed at the time as ductile designs, have exhibited nonductile behavior in historical earthquakes (like 1994 Northridge and 1995 Kobe)
- However, these CBFs did not collapse. Why?

Rai and Goel (2003)

Fundamental Paradigm

- Primary system (CBF) behavior is relatively unimportant for seismic stability of low-ductility frames
- Secondary system behavior (reserve capacity) – development of a predictable mechanism or sequence of mechanisms – is critical

Static Pushover Curve

Research Overview

- Objective: Develop a simple yet rigorous design approach for CBF buildings in moderate seismic regions that economically and reliably provides seismic stability
- Approach:
	- Conduct full-scale CBF tests
	- Develop CBF numerical models and conduct comprehensive simulations
	- Develop recommendations for seismic design

Full-Scale CBF Tests

- Lower two stories of threestory prototypes
- $R = 3$
	- Chevron configuration
	- No seismic requirements
- Ordinary concentrically-braced frame (OCBF)
	- $R = 3.25$
	- Split-X configuration
	- Ductile detailing (*b/t, KL/r*)
	- Ad hoc capacity design (beams, columns and connections)

Three-Story Prototype Building Plan

R **= 3 CBF**

R **= 3 CBF – Overall Behavior**

Bradley, Fahnestock, Hines and Sizemore (2017), *Journal of Structural Engineering*, 143 (6): 04017029.

R **= 3 CBF – Initial Behavior**

Bradley, Fahnestock, Hines and Sizemore (2017), *Journal of Structural Engineering*, 143 (6): 04017029.

R **= 3 CBF – Initial Behavior**

Bradley, Fahnestock, Hines and Sizemore (2017), *Journal of Structural Engineering*, 143 (6): 04017029.

R **= 3 CBF – Brace Behavior**

R **= 3 CBF – Top Story Behavior**

Bradley, Fahnestock, Hines and Sizemore (2017), *Journal of Structural Engineering*, 143 (6): 04017029.

R **= 3 CBF – Secondary Behavior**

Bradley, Fahnestock, Hines and Sizemore (2017), *Journal of Structural Engineering*, 143 (6): 04017029.

R **= 3 CBF – Secondary Behavior**

- Adjust loading
- Fracture lower story brace end connection (weld)
- Observe reserve capacity mechanisms
	- Brace reengagement
	- Long-link eccentricallybraced frame (EBF) behavior

Schematic Frame Elevation

R **= 3 CBF – Secondary Behavior**

Eccentrically-Braced Frame Behavior

Bradley, Fahnestock, Hines and Sizemore (2017), *Journal of Structural Engineering*, 143 (6): 04017029.

Ordinary Concentrically-Braced Frame

Bradley, Fahnestock, Hines and Sizemore (2017), *Journal of Structural Engineering*, 143 (6): 04017029.

OCBF Overall Behavior

- (3) Lower story south brace buckling
- (4) Upper story north brace-gusset weld fracture
- (5) Lower story beam-gusset weld fracture

OCBF Brace Buckling (2)

- (1) Beam yielding
- (2) Upper story south brace buckling
- (3) Lower story south brace buckling
- (4) Upper story north brace-gusset weld fracture
- (5) Lower story beam-gusset weld fracture

LLINOIS

Upper Story South

OCBF Brace Buckling (3)

- (1) Beam yielding
- (2) Upper story south brace buckling
- (3) Lower story south brace buckling
- (4) Upper story north brace-gusset weld fracture
- (5) Lower story beam-gusset weld fracture

LLINOIS

Lower Story South

TELLINOIS

OCBF Weld Fractures

OCBF Weld Fracture (4)

TELLINOIS

OCBF Weld Fractures
OCBF Weld Fracture (5)

TELLINOIS

OCBF Overall Behavior

- (3) Lower story south brace buckling
- (4) Upper story north brace-gusset weld fracture
- (5) Lower story beam-gusset weld fracture

Test Frame Numerical Simulations

Model Elevation Connection Detail

Sizemore, Fahnestock, Hines and Bradley (2017), *Journal of Structural Engineering*, 143 (6) 04017032

Experimental-Numerical Comparison

R **= 3 Chevron OCBF Split-X**

Sizemore, Fahnestock, Hines and Bradley (2017), *Journal of Structural Engineering*, 143 (6) 04017032

Numerical Simulation Cases

- $R = 3$ CBFs
- OCBFs
- *R* = 4 CBFs (new concept)
	- Design CBF for lower force level
	- Take simple measures to add reserve capacity
- Various heights and configurations
	- Chevron and Split-X
	- 3, 6 and 9 stories tall

Sizemore, Fahnestock and Hines (201), *Journal of Structural Engineering*, 145 (4), 04019016

Earthquake Simulations

Hines, Baise and Swift (2011), *Journal of Structural Engineering*, 137 (3): 358-366.

Current *R* **= 3.25 OCBF Chevron (Single-Record Response)**

New *R* **= 4 CBF Chevron (Single-Record Response)** 2500 $[2] \blacksquare$ \sum_{0}^{1250}
 $>^{\infty}$ -1250 $[3]$ -2500 5 $\delta_{\rm R}^{}$ (%) 2.5 θ -2.5 **GM 14, SF = 1.0** -5 3 6 9 12 $\overline{0}$ 15 $Time(s)$ $[2]$ $[3]$ $[1]$ **INOIS**

Current *R* **= 3.25 OCBF Split-X (Single-Record Response)**

New $R = 4$ CBF Split-X **(Single-Record Response)**

Current *R* **= 3 CBF (IDA, FEMA P-695)**

Sizemore, Fahnestock and Hines (201), *Journal of Structural Engineering*, 145 (4), 04019016

Current *R* **= 3.25 OCBF (IDA, FEMA P-695)**

Sizemore, Fahnestock and Hines (201), *Journal of Structural Engineering*, 145 (4), 04019016

Current *R* **= 4 CBF (IDA, FEMA P-695)**

Sizemore, Fahnestock and Hines (201), *Journal of Structural Engineering*, 145 (4), 04019016

Building Reserve Capacity Summary

- Split-X configuration without ductility can be harmful
- Connection strength can be helpful
- Strong chevron-configuration beams can be harmful
- In design, must anticipate post-elastic system behavior
- Steel frames naturally possess reserve capacity mechanisms
- Fundamental design philosophy: primary + reserve system

East Coast Seismic Resilience Research – Project 2

ICT/IDOT: Seismic Quasi-Isolation Bridge Design using Common Bearing Components

Funding: ICT/IDOT (R27-70, R27-133) Full-Scale Testing: Newmark Laboratory Numerical Simulations: XSEDE

Illinois Center for Transportation

ICT/IDOT: Seismic Quasi-Isolation Bridge Design using Common Bearing Components

- James LaFave (PI)
- Larry Fahnestock (Co-PI)
- Doug Foutch (Co-PI)
- Jerry Hajjar (Co-PI)
- Josh Steelman (RA, former PhD student)
- Jie Luo (RA, former PhD student)
- Derek Kozak (RA, former PhD student)
- Evgueni Filipov (RA, former MS student)
- Jessica Revell (RA, former MS student)

Quasi-isolation

- An approach that uses typical bridge bearings as fuses to limit the forces transmitted from the superstructure to the substructure during a seismic event, while accommodating the displacement demands
- Differs from classical seismic isolation in that it:
	- Does not require a complex design process
	- Does not require special components

Illinois Seismicity

(Tobias et al. 2008)

- Wide range of seismic hazard in the state of Illinois (lower probability events may be quite severe, even though higher probability events are not)
- IDOT Earthquake Resisting System (ERS):
	- Recently developed and adopted design approach tailored to typical Illinois bridge types

Typical Illinois Highway Overpass Bridge

Sample Prototype Bridge Plan

IDOT Earthquake Resisting System

- Primary objective: Prevent span loss (allow access for emergency vehicles)
- Three design / performance targets:
	- Level 1 Connections between the superstructure and substructures are designed to provide a nominal fuse capacity
	- Level 2 Sufficient seat widths at substructures are provided to allow for "unrestrained" superstructure motion
	- Level 3 Some plastic deformation in substructure and foundation elements may be allowed

Research Overview

- Objective: To calibrate and refine the IDOT ERS
- Tasks:
	- Conduct full-scale tests of typical bridge bearings
	- Develop bridge numerical models and conduct extensive parametric studies
	- Develop recommendations for seismic design of bridges using the quasi-isolation philosophy

Experimental Program

- Quantify fuse behavior of typical IDOT bridge bearing systems:
	- Type I bearings: bearings with an elastomer to concrete sliding surface
	- Type II bearings: elastomeric bearings with PTFE sliding surface
	- L-shaped retainers: designed to limit transverse service load deflections
	- Low-profile "fixed" bearings with steel pintles and anchor bolts

Full-Scale Testing of Bridge Bearings

Experimental Set-Up

Type I – Longitudinal Cyclic Tests

• Type I displacement-based protocol for quasistatic (QS) cyclic tests, which were run in addition to monotonic and increased strain rate (ISR) tests

Type I Longitudinal Cyclic Tests

7 in. x 12 in. elastomer; $h_{rt} = 1.875$ in.; σ = 200 psi psi

Type I Sliding Response Characteristics

$$
G_{\text{eff}} = \frac{K_{h,\text{eff}} h_n}{A}
$$

Type II – (QS) Longitudinal Sliding

Type I Bearing Sliding Model

- Difference in static vs. kinetic coefficient of friction
- Force-displacement behavior coupled in orthogonal shear directions

Type II Bearing Sliding Model

- Friction characterized based on experimental data
- Unstable hysteresis at large displacements

if $d > 0$ \rightarrow unseating

• Unseating is a critical limit state; it would likely lead to damage and possibly collapse

> Concrete substructure

Girder

Type I bearing

Transverse Cyclic Tests with Retainers

• Augmented Type I protocol with force-based targets

Type I Transverse Response w/o Lift-Off

Retainer Designs to Minimize Lift-Off

8 in.

6 in.

Retainer Model

- Gap with elasto-plastic response until retainer fracture
- Independent behavior of the 2 retainers
- Calibrated based on experiments and finite element modeling

Low-Profile Fixed Bearing Model

Bi-directional fixed bearing model with yielding, anchor-bolt fracture, friction, and variable pinching

Plans of 3-Span Prototype Bridges

 $W = 13.16 \text{ m} (43' - 2'')$ $L_1 = 24.38 \text{ m} (80')$ L_2 = 36.58 m (120') $L_3 = 24.38$ m (80')

Note: Superstructure consists of six girders. Each girder is supported by one bearing at substructures.

- Ω Steel plate girders / PPC girders with composite concrete deck
- Multi-column reinforced concrete pier
- Elastomeric expansion bearing (Type I) with side retainers
- Low-profile steel fixed bearing / #8
	- (U.S.) steel dowel connection
- $\mathbf{Longitudinal}^{\bigcirc}$ Expansion joint
	- **6** Steel H pile
	- \oslash Approach slab

Sections of 3-Span Prototype Bridges

43'-2" out to out deck

Plans of 4-Span Prototype Bridges

Nonlinear Dynamic Analysis

A suite of 20 site-specific earthquake ground motions for Cairo, IL with a 1,000-year return period (Kozak et al. 2016) were employed for nonlinear dynamic bridge analyses

- PGA: $0.26 \approx 0.40$ g
- PGV: $0.31 \approx 1.10 \text{ m/s}$
- PGD: 0.11 ~ 0.72 m

0.75

Observations from Analysis

Most bridges only sustained limited local damage and were unlikely to collapse when subjected to horizontal earthquake ground motions with a 1,000-year return period in the Midwestern U.S.

Two major seismic performance deficiencies

Limited Bearing Unseating

• Bearing unseating at abutments was observed in 13 out of 6,400 analyses (< 1%)

Confirmation from Field Observations

Skew highway bridges collapsed during 2010 Chile earthquake

- Miraflores bridge (20° skew)
- Northeast-bound bridge at Lo Echevers (33° skew)
- Romero overpass (31° skew)
- Route 5 railway overpass at Hospital (40° skew)
- Quilicura railway overpassing at the Avenida Manuel Antonio Matta (45° skew)

All of these skew bridges collapsed with acute deck corners moving away from seattype abutments.

Damage at south abutment of Route 5 overcrossing at Hospital Source: Yen et al. (2011)

Yen, W. et al. (2011). *Rep. No.* FHWA-HRT-11-030.

Bridge Quasi-isolation Summary

- Flexibility and sliding response of common elastomeric bearings can allow for quasi-isolated behavior
- Retainer elements and fixed bearings need to be carefully detailed to limit forces on substructures
- Vulnerability to large displacement demands is increased by: skew, tall substructures, flexible foundations / softer soils, and Type II bearings
- The current IDOT ERS prevents unseating and potential span loss under design-level events for most bridges in Illinois

Overall Summary for East Coast / Central US Infrastructure

- Current practice does not rigorously consider seismic design
- A large portion of current infrastructure will perform adequately in a design-level seismic event, owing to inherent redundancy and robustness
- However, vulnerabilities do exist, and there is an opportunity to enhance seismic performance and increase resilience through modest and relatively inexpensive modifications

Scope of Problem / Open Issues / Potential Use of NHERI Facilities

- **Data:** Develop inventory of critical and potentially vulnerable infrastructure, including projected societal impact
- **Experimental:** Characterize fundamental seismic behavior of existing infrastructure (older up through current practice)
- **Simulation:** Develop tools for modeling components and systems with limited ductility, up through collapse
- **Experimental / Simulation:** Develop innovative engineering strategies for enhancing performance and increasing resilience
	- New construction
	- Retrofit existing
- **Outreach:** Communicate to government agencies and the public what resilience means for the East Coast / Central US

Grand Challenge: Resilience of East Coast Infrastructure

Larry Fahnestock, PhD, PE Professor, CEE *University of Illinois at Urbana-Champaign*

September 24, 2019 *NHERI Lehigh Researcher Workshop*

