Grand Challenge: Resilience of East Coast Infrastructure

Larry Fahnestock, PhD, PE Professor, CEE University of Illinois at Urbana-Champaign

September 24, 2019 NHERI Lehigh Researcher Workshop

Resilience

• The ability to recover quickly from a difficulty or disturbance

West Coast Perspective

- Ductile structural systems that are rigorously designed for seismic effects
- Public awareness of earthquake hazard supports initial investment in life safety

Borello and Fahnestock (2017), Journal of Structural Engineering, 143 (10): 04017133.

West Coast Perspective

 Growing understanding of the need for even more investment toward resilience (high performance systems)

Miller, Fahnestock and Eatherton (2012), Engineering Structures, 40: 288-298.

East Coast / Central US Perspective

- Economical, efficient structural systems
- Gravity and wind are primary considerations
- Seismic is part of the design framework, but response is not well understood

Bradley, Fahnestock, Hines and Sizemore (2017), Journal of Structural Engineering, 143 (6): 04017029.

East Coast / Central US Perspective

- Structural systems are likely to exhibit brittle limit states
- Little public support for additional investment in seismic resilience

Bradley, Fahnestock, Hines and Sizemore (2017), Journal of Structural Engineering, 143 (6): 04017029.

East Coast / Central US Seismic Hazard

(USGS)

East Coast / Central US Earthquakes

<u>Colorado</u>

Light Moderate Strong *Violent* nono nono none Verv light Light Mylorato Hoavy PEAK ACC.(%g) <.17 .17-1.4 1.4-3.9 3.9-9.2 9.2-18 18-34 34-65 65-124 >124 PEAK VEL.(cm/s) <0.1 0.1-1.1 1.1-3.4 3.4-8.1 8.1-16 16-31 31-60 60-116 >116 11-111

Magnitude: 5.3 Depth: 2.5 miles Intensity: VI

<u>Virginia</u>

Magnitude: 5.8 Depth: 3.7 miles Intensity: VI

<u>Oklahoma</u>

USGS ShakeMap : OKLAHOMA Sun Nov 6, 2011 03:53:10 GMT M 5.6 N35.54 W96.75 Depth: 5.0km ID:b0006klz

INSTRUMENTAL INTENSITY	1	11-111	IV	V	VI	VII	VIII	IX	N+
PEAK VEL.(cm/s)	<0.1	0.1-1.1	1.1-3.4	3.4-8.1	8.1-16	16-31	31-60	60-116	>116
PEAK ACC.(%g)	<.17	.17-1.4	1.4-3.9	3.9-9.2	9.2-18	18-34	34-65	65-124	>124
DAMAGE	none	none	none	Very light	Light	Moderate	Moderate/Heavy	Heavy	Very Heavy
SHAKING	Not felt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme

Magnitude: 5.6 Depth: 3.1 miles Intensity: VI

Seismic Resilience

- How should resilience objectives vary for different seismic hazard characteristics?
 - High hazard, sort recurrence
 - Past to Current life safety / collapse prevention
 - Current to Future rapid return to occupancy
 - Moderate hazard, long recurrence
 - Current uncertain
 - Future life safety / collapse prevention / functionality for emergency response

East Coast Seismic Resilience Research

- 1. Buildings: Reserve Capacity
- 2. Bridges: Quasi-isolation

- Theme: employ existing systems and components, with modest modifications to enhance seismic performance
- Approach: full-scale testing and extensive numerical simulations

East Coast Seismic Resilience Research – Project 1

NEESR: Reserve Capacity in New and Existing Low-Ductility Braced Frames

Funding: NSF (CMMI-1207976), AISC Full-Scale Testing: NEES@Lehigh Numerical Simulations: XSEDE

NEESR: Reserve Capacity in New and Existing Low-Ductility Braced Frames

- University of Illinois at Urbana-Champaign
 - Larry Fahnestock (PI)
 - Josh Sizemore (RA, former PhD student)
- Tufts University / LeMessurier Consultants
 - Eric Hines (Co-PI)
 - Cameron Bradley (RA, former PhD student)
 - Jessalyn Nelson (RA, former MS student)
- École Polytechnique Montréal
 - Robert Tremblay (Co-PI)
 - Thierry Beland (RA, PhD student)
 - Ali Davaran (former research scientist)

LeMessurier.

East Coast / Central US Braced Frames

- Assume pin connections
- Statically determinate
- Stiff and efficient
- No seismic detailing
- R = 3

- Seismic design using high-ductility structural systems is not feasible
- R = 3 concentrically-braced frames (CBF) systems are prevalent in moderate seismic regions

East Coast / Central US Braced Frames

 How does a typical braced frame (R = 3) respond when it is loaded beyond the elastic range of behavior?

CBF Seismic Performance

- CBFs, which were viewed at the time as ductile designs, have exhibited nonductile behavior in historical earthquakes (like 1994 Northridge and 1995 Kobe)
- However, these CBFs did not collapse. Why?

Rai and Goel (2003)

Fundamental Paradigm

- Primary system (CBF) behavior is relatively unimportant for seismic stability of low-ductility frames
- Secondary system behavior (reserve capacity) – development of a predictable mechanism or sequence of mechanisms – is critical

Static Pushover Curve

Research Overview

- Objective: Develop a simple yet rigorous design approach for CBF buildings in moderate seismic regions that economically and reliably provides seismic stability
- Approach:
 - Conduct full-scale CBF tests
 - Develop CBF numerical models and conduct comprehensive simulations
 - Develop recommendations for seismic design

Full-Scale CBF Tests

- Lower two stories of threestory prototypes
- *R* = 3
 - Chevron configuration
 - No seismic requirements
- Ordinary concentrically-braced frame (OCBF)
 - -R = 3.25
 - Split-X configuration
 - Ductile detailing (b/t, KL/r)
 - Ad hoc capacity design (beams, columns and connections)

Three-Story Prototype Building Plan

R = 3 CBF

R = 3 CBF – Overall Behavior

Bradley, Fahnestock, Hines and Sizemore (2017), Journal of Structural Engineering, 143 (6): 04017029.

R = 3 CBF – Initial Behavior

Bradley, Fahnestock, Hines and Sizemore (2017), Journal of Structural Engineering, 143 (6): 04017029.

R = 3 CBF – Initial Behavior

Bradley, Fahnestock, Hines and Sizemore (2017), Journal of Structural Engineering, 143 (6): 04017029.

R = 3 CBF – Brace Behavior

R = 3 CBF – Top Story Behavior

Bradley, Fahnestock, Hines and Sizemore (2017), Journal of Structural Engineering, 143 (6): 04017029.

R = 3 CBF – Secondary Behavior

Bradley, Fahnestock, Hines and Sizemore (2017), Journal of Structural Engineering, 143 (6): 04017029.

R = 3 CBF – Secondary Behavior

- Adjust loading
- Fracture lower story brace end connection (weld)
- Observe reserve capacity mechanisms
 - Brace reengagement
 - Long-link eccentricallybraced frame (EBF)
 behavior

Schematic Frame Elevation

R = 3 CBF – Secondary Behavior

Eccentrically-Braced Frame Behavior

Bradley, Fahnestock, Hines and Sizemore (2017), Journal of Structural Engineering, 143 (6): 04017029.

Ordinary Concentrically-Braced Frame

Bradley, Fahnestock, Hines and Sizemore (2017), Journal of Structural Engineering, 143 (6): 04017029.

OCBF Overall Behavior

- (3) Lower story south brace buckling
- (4) Upper story north brace-gusset weld fracture
- (5) Lower story beam-gusset weld fracture

OCBF Brace Buckling (2)

- (1) Beam yielding
- (2) Upper story south brace buckling
- (3) Lower story south brace buckling
- (4) Upper story north brace-gusset weld fracture
- (5) Lower story beam-gusset weld fracture

Upper Story South

OCBF Brace Buckling (3)

- (1) Beam yielding
- (2) Upper story south brace buckling
- (3) Lower story south brace buckling
- (4) Upper story north brace-gusset weld fracture
- (5) Lower story beam-gusset weld fracture

Lower Story South

OCBF Weld Fractures

OCBF Weld Fracture (4)

OCBF Weld Fractures
OCBF Weld Fracture (5)

OCBF Overall Behavior

- (4) Upper story north brace-gusset weld fracture
- (5) Lower story beam-gusset weld fracture

Test Frame Numerical Simulations

Model Elevation

Connection Detail

Sizemore, Fahnestock, Hines and Bradley (2017), Journal of Structural Engineering, 143 (6) 04017032

Experimental-Numerical Comparison

R = 3 Chevron

OCBF Split-X

Sizemore, Fahnestock, Hines and Bradley (2017), Journal of Structural Engineering, 143 (6) 04017032

Numerical Simulation Cases

- *R* = 3 CBFs
- OCBFs
- R = 4 CBFs (new concept)
 - Design CBF for lower force level
 - Take simple measures to add reserve capacity
- Various heights and configurations
 - Chevron and Split-X
 - 3, 6 and 9 stories tall

Sizemore, Fahnestock and Hines (201), Journal of Structural Engineering, 145 (4), 04019016

Earthquake Simulations

Hines, Baise and Swift (2011), Journal of Structural Engineering, 137 (3): 358-366.

Current *R* = 3.25 OCBF Chevron (Single-Record Response)

New *R* = 4 CBF Chevron (Single-Record Response) 2500 [2] [1] [3] -2500 5 $\delta_{\rm R}/{\rm h}~(\%)$ 2.5 0 -2.5 GM 14, SF = 1.0 -5 6 12 3 15 0 9 Time (s) [2] [1] [3] INOIS

Current *R* = 3.25 OCBF Split-X (Single-Record Response)

New R = 4 CBF Split-X (Single-Record Response)

Current *R* = 3 CBF (IDA, FEMA P-695)

Sizemore, Fahnestock and Hines (201), Journal of Structural Engineering, 145 (4), 04019016

Current *R* = 3.25 OCBF (IDA, FEMA P-695)

Sizemore, Fahnestock and Hines (201), Journal of Structural Engineering, 145 (4), 04019016

Current *R* = 4 CBF (IDA, FEMA P-695)

Sizemore, Fahnestock and Hines (201), Journal of Structural Engineering, 145 (4), 04019016

Building Reserve Capacity Summary

- Split-X configuration without ductility can be harmful
- Connection strength can be helpful
- Strong chevron-configuration beams can be harmful
- In design, must anticipate post-elastic system behavior
- Steel frames naturally possess reserve capacity mechanisms
- Fundamental design philosophy: primary + reserve system

East Coast Seismic Resilience Research – Project 2

ICT/IDOT: Seismic Quasi-Isolation Bridge Design using Common Bearing Components

Funding: ICT/IDOT (R27-70, R27-133) Full-Scale Testing: Newmark Laboratory Numerical Simulations: XSEDE

ICT/IDOT: Seismic Quasi-Isolation Bridge Design using Common Bearing Components

- James LaFave (PI)
- Larry Fahnestock (Co-PI)
- Doug Foutch (Co-PI)
- Jerry Hajjar (Co-PI)
- Josh Steelman (RA, former PhD student)
- Jie Luo (RA, former PhD student)
- Derek Kozak (RA, former PhD student)
- Evgueni Filipov (RA, former MS student)
- Jessica Revell (RA, former MS student)

Quasi-isolation

- An approach that uses typical bridge bearings as fuses to limit the forces transmitted from the superstructure to the substructure during a seismic event, while accommodating the displacement demands
- Differs from classical seismic isolation in that it:
 - Does not require a complex design process
 - Does not require special components

Illinois Seismicity

(Tobias et al. 2008)

- Wide range of seismic hazard in the state of Illinois (lower probability events may be quite severe, even though higher probability events are not)
- IDOT Earthquake Resisting System (ERS):
 - Recently developed and adopted design approach tailored to typical Illinois bridge types

Typical Illinois Highway Overpass Bridge

Sample Prototype Bridge Plan (w/ Expansion Joints @ Each End)

IDOT Earthquake Resisting System

- Primary objective: Prevent span loss (allow access for emergency vehicles)
- Three design / performance targets:
 - Level 1 Connections between the superstructure and substructures are designed to provide a nominal fuse capacity
 - Level 2 Sufficient seat widths at substructures are provided to allow for "unrestrained" superstructure motion
 - Level 3 Some plastic deformation in substructure and foundation elements may be allowed

Research Overview

- Objective: To calibrate and refine the IDOT ERS
- Tasks:
 - Conduct full-scale tests of typical bridge bearings
 - Develop bridge numerical models and conduct extensive parametric studies
 - Develop recommendations for seismic design of bridges using the quasi-isolation philosophy

Experimental Program

(Type I)

- Quantify fuse behavior of typical IDOT bridge bearing systems:
 - Type I bearings: bearings with an elastomer to concrete sliding surface
 - Type II bearings: elastomeric bearings with PTFE sliding surface
 - L-shaped retainers: designed to limit transverse service load deflections
 - Low-profile "fixed" bearings with steel pintles and anchor bolts

Full-Scale Testing of Bridge Bearings

Experimental Set-Up

Type I – Longitudinal Cyclic Tests

 Type I displacement-based protocol for quasistatic (QS) cyclic tests, which were run in addition to monotonic and increased strain rate (ISR) tests

Type I Longitudinal Cyclic Tests

7 in. x 12 in. elastomer; h_{rt} = 1.875 in.; σ = 200 psi psi

Type I Sliding Response Characteristics

$$G_{eff} = \frac{K_{h,eff} h_{rt}}{A}$$

Type II – (QS) Longitudinal Sliding

Type I Bearing Sliding Model

- Difference in static vs. kinetic coefficient of friction
- Force-displacement behavior coupled in orthogonal shear directions

Type II Bearing Sliding Model

- Friction characterized based on experimental data
- Unstable hysteresis at large displacements
- Unseating is a critical limit state; it would likely lead to damage and possibly collapse

Transverse Cyclic Tests with Retainers

Augmented Type I protocol with force-based targets

Type I Transverse Response w/o Lift-Off

Retainer Designs to Minimize Lift-Off

8 in.

6 in.

Retainer Model

- Gap with elasto-plastic response until retainer fracture
- Independent behavior of the 2 retainers
- Calibrated based on experiments and finite element modeling

Low-Profile Fixed Bearing Model

Bi-directional fixed bearing model with yielding, anchor-bolt fracture, friction, and variable pinching

Plans of 3-Span Prototype Bridges

W = 13.16 m (43'-2") $L_1 = 24.38 \text{ m} (80')$ $L_2 = 36.58 \text{ m} (120')$ $L_3 = 24.38 \text{ m} (80')$

Note: Superstructure consists of six girders. Each girder is supported by one bearing at substructures.

- Steel plate girders / PPC girders with composite concrete deck
- ② Multi-column reinforced concrete pier
- ③ Elastomeric expansion bearing (Type I) with side retainers
- ④ Low-profile steel fixed bearing / #8
 - (U.S.) steel dowel connection
- Longitudinal^{S Expansion joint}
 - [©] Steel H pile
 - $\ensuremath{\textcircled{}}$ Approach slab

Sections of 3-Span Prototype Bridges

43'-2" out to out deck

Plans of 4-Span Prototype Bridges

Nonlinear Dynamic Analysis

A suite of 20 site-specific earthquake ground motions for Cairo, IL with a 1,000-year return period (Kozak et al. 2016) were employed for nonlinear dynamic bridge analyses

- PGA: 0.26 ~ 0.40 g
- PGV: 0.31 ~ 1.10 m/s
- PGD: 0.11 ~ 0.72 m

0.75

Observations from Analysis

Most bridges only sustained limited local damage and were unlikely to collapse when subjected to horizontal earthquake ground motions with a 1,000-year return period in the Midwestern U.S.

Two major seismic performance deficiencies

Limited Bearing Unseating

Bearing unseating at abutments was observed in 13 out of 6,400 analyses (< 1%)

Confirmation from Field Observations

Skew highway bridges collapsed during 2010 Chile earthquake

- Miraflores bridge (20° skew)
- Northeast-bound bridge at Lo Echevers (33° skew)
- Romero overpass (31° skew)
- Route 5 railway overpass at Hospital (40° skew)
- Quilicura railway overpassing at the Avenida Manuel Antonio Matta (45° skew)

All of these skew bridges collapsed with acute deck corners moving away from seattype abutments.

Damage at south abutment of Route 5 overcrossing at Hospital Source: Yen et al. (2011)

Yen, W. et al. (2011). Rep. No. FHWA-HRT-11-030.

Bridge Quasi-isolation Summary

- Flexibility and sliding response of common elastomeric bearings can allow for quasi-isolated behavior
- Retainer elements and fixed bearings need to be carefully detailed to limit forces on substructures
- Vulnerability to large displacement demands is increased by: skew, tall substructures, flexible foundations / softer soils, and Type II bearings
- The current IDOT ERS prevents unseating and potential span loss under design-level events for most bridges in Illinois

Overall Summary for East Coast / Central US Infrastructure

- Current practice does not rigorously consider seismic design
- A large portion of current infrastructure will perform adequately in a design-level seismic event, owing to inherent redundancy and robustness
- However, vulnerabilities do exist, and there is an opportunity to enhance seismic performance and increase resilience through modest and relatively inexpensive modifications

Scope of Problem / Open Issues / Potential Use of NHERI Facilities

- **Data:** Develop inventory of critical and potentially vulnerable infrastructure, including projected societal impact
- **Experimental:** Characterize fundamental seismic behavior of existing infrastructure (older up through current practice)
- **Simulation:** Develop tools for modeling components and systems with limited ductility, up through collapse
- **Experimental / Simulation:** Develop innovative engineering strategies for enhancing performance and increasing resilience
 - New construction
 - Retrofit existing
- Outreach: Communicate to government agencies and the public what resilience means for the East Coast / Central US

Grand Challenge: Resilience of East Coast Infrastructure

Larry Fahnestock, PhD, PE Professor, CEE University of Illinois at Urbana-Champaign

September 24, 2019 NHERI Lehigh Researcher Workshop

