

Advanced Simulation for Natural Hazard Engineering & Grand Challenges for Multi-Hazard Engineering

Seismic Structural Components

LEHIGH JOINT RESEARCHER WORKSHOP UC SAN DIEGO & SIMCENTER SEPTEMBER 23-24, 2019 | LEHIGH UNIVERSITY, BETHLEHEM, PA

Dr. Robert B. Fleischman

University of Arizona 24 September 2019

Presentation Outline

Grand Challenges in Earthquake Engineering Structural Research

Approaches for Integrating Physical Experiments & Computer Simulation using NHERI resources

Example Projects: Seismic Design of Horizontal Elements

- Case Study 1: NSF GOALI: Development of a Seismic Design Methodology for Precast Floor Diaphragms (DSDM)
- Case Study 2: NSF NEES: Inertial Force-Limiting Anchorage Systems (IFAS)
- Case Study 3: NSF ENH: Development of New Knowledge for Steel Seismic Floor and Roof Collectors

Grand Challenges in Earthquake Engineering Structural Research

NHERI Five Year Science Plan

The NHERI Five-Year Science Plan identifies three Grand Challenges:

Three Grand Challenges

- Identify and *quantify the characteristics of earthquake*, windstorm, and associated *hazards* including tsunamis, storm surge, and waves that are **damaging to civil infrastructure** and disruptive to communities.
- Evaluate the **physical vulnerability of civil infrastructure** and the *social vulnerability of populations* in communities exposed to earthquakes, windstorms, and associated hazards.
- Create the **technologies and engineering tools to design**, **construct**, **retrofit**, and operate a multi-hazard **resilient and sustainable infrastructure** for the nation.

2019 NHERI INTERNATIONAL WORKSHOP Report

NHERI Lehigh Joint Researcher Workshop w/ UCSD & SimCenter, 23-24 September, 2019

Grand Challenges in Earthquake Engineering

- 1. Community Resilience Framework: interactive comprehensive framework for measuring, monitoring, and evaluating community resilience at different scales
- 2. Decision Making: decisions based on a clear understanding of the built environment, simulationbased decision-making strategies. state-of-the-art decision-making tools for more efficient resource allocation based on comparing different strategies for earthquake mitigation
- **3. Simulation:** knowledge of the inventory of infrastructure, scalable tools. Powerful simulation technologies to model the time and spatial impacts of a seismic event from the component to the regional scale
- **4. Mitigation:** strategies to measure, monitor, and model community vulnerability to establish mitigation strategies. Better approaches for retrofit of the built environment's most vulnerable sectors
- 5. Design Tools: emerging sustainable materials and innovative structural concepts to significantly change the way infrastructure is designed and constructed, integrated with design tools that could dramatically improve earthquake resilience. Harness the power of performance-based earthquake engineering (PBEE).

National Research Council. 2011. Grand Challenges in Earthquake Engineering Research: A Community Workshop Report. Washington, DC: The National Academies Press. https://doi.org/10.17226/13167.

Grand Challenges in Earthquake Engineering

			OVERARCH CHALLENGE	ING ES	GRAND)	
Dimension (Breakout Group)	Gr	and Challenge Problem	Community Resilience Framework	Decision Making	Simulation	Mitigatior	Design 1 Tools
Community Resilience	1.	Framework for Measuring, Monitoring, and Evaluating Community Resilience					
	2.	Motivating Action to Enhance Community Resilience					
Pre-event Prediction and Planning	on 3.	Develop a National Built Environment Inventory					
	4.	Multi-Scale Seismic Simulation of the Built Environment	\checkmark				
	5.	Integrated Seismic Decision Support					
	6.	Risk Assessment and Mitigation of Vulnerable Infrastructure	\checkmark				
	7.	Protect Coastal Communities					
Design Infrastructure	of 8.	Regional Disaster Simulator					
	9.	High Fidelity Simulation					
	10	. New Sustainable Materials and Systems for Earthquake Resilience	\checkmark				
	11	. Harnessing the Power of Performance Based Earthquake Engineering (PBEE) to Achieve Resilient Communities	\checkmark				
Post-event Response 12. Rapid Post-Earthquake Assessment and Recovery Reconstruction and Recovery			\checkmark	\checkmark			

National Research Council. 2011. Grand Challenges in Earthquake Engineering Research: A Community Workshop Report. Washington, DC: The National Academies Press. https://doi.org/10.17226/13167.

Grand Challenges

- Experimental research in earthquake engineering has shifted from isolated characterization testing of existing structural components:
 - System Behavior & System Interactions
 - Vulnerable or Poorly Understood Systems
 - New Materials and Processes
 - Low Damage, Protective and Smart Systems
 - Non Structural Components and Contents
 - Sensors and Monitoring
 - Risk Assessment and Hazard Mitigation
 - Multi-Hazard, Multi Scale Investigations
 - Special Structures

System Behavior and System Interactions

Complex System Behaviors:

- Tall Buildings
- Discontinuities (e.g. Transfer Conditions)
- Diaphragm action, Tie Structures
- Structural Irregularity in Plan, Vertical Offsets

System Behavior and System Interactions

> System Interactions:

- Seismic Force Resisting System (SFRS) Gravity Load Resisting System (GLRS) coupling
- Soil-Structure-Foundation Interaction
- Axial Force Interactions:
 - ✓ Gravity Load,
 - ✓ Overturning
 - ✓ Vertical Acceleration

nm thick

(EERI 2011) Photo: Sritharan (Elwood 2011)

NHERI Lehigh Joint Researcher Workshop w/ UCSD & SimCenter, 23-24 September, 2019

long

pe wa

Vulnerable or Poorly Understood Systems

> Vulnerable/Poorly Understood Systems

- Near Collapse Behavior
- Identifying "Killer" Buildings
- Underdesigned or Failure Critical
- Complex Response:
 ✓ e.g. Infills

Department of Building and Housing, Canterbury Earthquake Royal Commission

New Materials and Processes

New Materials and Processes

- Polymer concrete, Ductile concrete
- Self-healing materials and systems
- High Performance Materials
- 3D Printed Components
- 3D Printed Concrete
- New materials being used for sustainability:
 - ✓ Recycled / upcycled materials
 - ✓ energy efficient materials, high albedo, thermal mass, etc.

Protective Systems, Low Damage Systems

Innovative Devices and Structures

- Active, Semi-Active, Passive
- Negative Stiffness Devices, Energy Sinks
- Self Centering
- Low Damage Systems
- Protective Systems
- Semi-Active Cladding Systems
- New Devices, New Systems

Non Structural Components and Contents

Mechanical

Systems

- Stairs, Elevators
- Cladding, Glazing

Special Structures

- Lifelines: Water, sewer, gas, electric
- ➤ Wind Turbines
- ➢ Rooftop Solar
- Power Substations
- Marine structures, Ports, Piers
- Control Towers

Risk Assessment and Hazard Mitigation

Risk Assessment & Hazard Mitigation

- Fragility of structures in aftershocks after damage in the mainshock
- Monitoring, sensors networks

Grand Challenges

Grand Challenges are Evolving

- Construction methods are perpetually changing based on new knowledge, new materials, new manufacturing processes
- Some new methods are introduced directly for resilience; while others may be necessitated by sustainability needs, shifting demographics, limited resources or economic constraints
- These new materials and techniques require evaluation on a system basis

Grand Challenge Research Tools

Research Tools are Evolving

New Testing Capabilities:

• e.g. NHERI UCSD 6-DOF Shake Table

New Simulation Tools:

• e.g.SimCenter quoFEM – PBE work flows

Emerging Testing techniques using existing NHERI or other facilities:

- e.g. Hybrid shake table testing method,
- Nonstructural demand simulators, fault displacement effects
- real time hybrid testing of axially stiff systems,
- soil-foundation testing at larger scales (e.g. soil box)

New Measurement Techniques

• e.g. DIC, etc.

Approaches for Integrating Experiments & Simulation

SWOT of Physical Experiments & Simulation

Laboratory Testing

Ability to straightforwardly characterize components and subassemblages from the elastic range to ultimate limit states under well-defined loading and measurement

Shake Table Testing

Ability to examine system behavior, including the ability to generate realistic inertial force paths and realistically enforce distributed boundary conditions

Comp. Simulation

Ability to cost-effectively evaluate and comprehensively measure many scenarios, design parameters, and loading conditions, without *physical* limitations on model size.

Grand Challenges

An Approach for Integrating NHERI EFs & SIM

Case Studies

Illustrative Topic: Horizontal Elements

Horizontal Elements

- How behave? How interact? Failure critical?
- Force Demands (Restrepo, Rodriguez)
- Vertical Compatibility (Sritharan, Henry)
- Big Box Rigid-Wall Flex Diaphragm (Koliou, Filliatrault)
- Flexible unfilled metal deck (Tremblay)
- Steel diaphragms (Schafer, Eatherton, Hajjar, Easterling)
- Composite Systems (Gravity Load, Moment Frame)
- Disproportionate Collapse (Main, Sadek, Fahnestock, etc.)
- Fire (NIST, Choe etc.)

Example Projects

Example Projects: Seismic Design of Horizontal Elements

- Case Study 1: NSF GOALI: Development of a Seismic Design Methodology for Precast Floor Diaphragms (DSDM)
- Case Study 2: NSF NEES: Inertial Force-Limiting Anchorage Systems (IFAS)
- Case Study 3: NSF ENH: Development of New Knowledge for Steel Seismic Floor and Roof Collectors

Project Case Studies: Characteristics

- Multi-University Research Projects
- Lehigh & UCSD co-Pls and Grad Students
- Full- or Large-Scale Testing
- Strong Simulation Component
- Design Consultant Oversight
- Industry Partners
- General Topic: Floor Systems

NHERI LEHIGH & UCSD EF CAPABILITIES

Laboratory simulations and tests enabled by the **NHERI Lehigh EF** include:

- **1. Hybrid simulation (HS)**
- 2. Geographically distributed hybrid simulation (DHS)
- 3. Real-time hybrid earthquake simulation (RTHS)
- 4. Geographically distributed real-time hybrid earthquake simulation
- 5. Dynamic testing (DT)
- 6. Quasi-static testing (QS)

Laboratory simulations and tests enabled by the NHERI@UCSD EF include:

- **1. Shake Table Testing**
- 2. Blast Simulator

Project Case Studies: NHERI EF Usage

Lehigh Testing Program used for:

- Component Characterization
- Analytical Model Construction
- Prototype Development
- Guidance for Large Scale System Tests

UCSD Testing Program used for:

- System Level Experiments
- Model Validation
- Demonstration of Concept

Project 1: NSF GOALI - DSDM

Development of a Seismic Design Methodology for Precast Floor Diaphragms (DSDM) 2005-2009

DSDM Research Team

Precast Concrete Diaphragms

Diaphragm action carries seismic forces horizontally in the floor slab to walls and frames...

Precast floor diaphragms have shown a vulnerability in past earthquakes...

Research Challenges: Precast Diaphragms

Research Challenges: Precast Concrete Floor Diaphragms

- Vulnerable System
- Poorly known Capacities
- Poorly known Demands
- Absence of Applicable Design Rules
- Complex Dynamic Response
- Complex Load Paths
- Complex Boundary Conditions

Research Objective: Precast Concrete Floor Diaphragms

- Characterize the precast diaphragm reinforcement/connectors
- Develop and validate reliable nonlinear dynamic models for structures with precast diaphragms: including diaphragm flexibility and diaphragm limit states
- Enable direct measurements of force and deformation demands on precast diaphragm connectors
- Perform extensive parameter studies examining capacity and demand
- Develop and codify new design provisions

Rationale for Large Scale Laboratory Testing

• Rationale for laboratory testing:

- Limited information existed on the characteristics of precast diaphragm connectors
- No information on the response of precast diaphragm connectors under nonproportional shear and tension
- No models existed for the nonlinear or non-ductile response of precast floor diaphragm systems

• Rationale for ATLSS Laboratory:

- Ability to create multi-axis control for cyclic shear, tension/compression, and positive/negative moment
- Ability to perform hybrid testing to develop realistic combinations of force, and adapt as the joint and connectors degrad.

Rationale for Large Scale Shake Table Testing

• Rationale for shake testing:

- Boundary Conditions of a distributed system such as a diaphragm do not lend themselves to concentrated actions (e.g. from actuators)
- Finite Element Analysis can produce realistic boundary conditions, but *calibrated* models are required for code change.

• Rationale for NEES@UCSD Shake Table:

- Scaling of precast elements, reinforcement and connectors has lower limit of 1/3rd to ½ scale before testing details become "toys"
- Observed diaphragm failures in precast diaphragms have historically occurred in longer span floor decks

Research Flow

Structure Level (UCSD)

- Diaphragm Inertial Forces
- Flexible Diaphragm Structures

Diaphragm Level (UA)

- Diaphragm Capacity
- Diagram Load Paths & Limit States

Detail Level (LU)

- Connector Properties
- Connector Classification
Shear Connector Model Calibration

Diaphragm Analytical Models

Nonlinear Dynamic Analysis

Test Substructure: Panels at Critical Joint

NHERI Lehigh Joint Researcher Workshop w/ UCSD & SimCenter, 23-24 September, 2019

Lehigh MDOF Test Fixture

Predetermined Displacement History Tests

Fig. 11. Instrumentation layout

Fig. 12. DOF and force transformations: (a) FE model; (b) test specimen; (c) deformed shape; (d) free body diagram

PDH Test Predictions

Table 2. Test Sequence				
Test	Earthquake	Intensity	Direction	Test panel
PDH 1	Charleston (CH)	SVC	Transverse	South
PDH 2	Charleston (CH)	DBE	Transverse	North
PDH 3	Charleston (CH)	MCE	Transverse	South
PDH 4	Charleston (CH)	DBE	Bidirection (Bi)	North
PDH 5	Berkeley (BK)	MCE	Transverse	South

PDH Test Response

PDH Test Results: Flexure

Critical Shear Joint: Hybrid Test

Lehigh Test Algorithms: Hybrid Testing

Hybrid Testing :

- Matlab based program
- Alpha method with fixed number of iterations (Mercan and Ricles 2005)
- Restoring force provided by RDOF Model (ANSYS)
- Actuator displacement commands $(\Delta_1, \Delta_2, \Delta_3)$ controlled through a multiple loop architecture
- Inner loop iterates for kinematic compensation of three actuator system

Test Results: Hybrid Testing

Practical Considerations

Proposal Planning

Practical Considerations

Proposal Planning

Shake Table Demonstration Test

Analytical Simulation

DSDM Project Outcome

- **Deliverable**: A new seismic design methodology for precast concrete diaphragms.
- Outcome: New design provisions approved for inclusion in ASCE 7-16 and Part 3 of the 2015 NEHRP Provisions.

Project 2: NEESR IFAS

NEESR: Inertial Force-Limiting Floor Anchorage Systems for Seismic Resistant Building Structures (IFAS)

NEES @ UCSD

NEES @ Lehigh

IFAS Project Team

Industry Partners: NEESR Shake Table Test

Research Team

Research Meeting #3 at R&C Offices

IFAS Concept

- Provides a deformable (ductile) connection between the floor system (GLRS) and the primary vertical plane LFRS elements (e.g., shear walls, braced frames)
- Designed with a predefined design strength (F_y) to partially uncouple the GLRS and the LFRS
- The structure acts as a traditional structure for daily loads

Daily wind or minor earthquake

NHERI Lehigh Joint Researcher Workshop w/ UCSD & SimCenter, 23-24 September, 2019

IFAS Concept

- The IFAS will reach its design strength in a strong earthquake...
- ...and deform, thereby transforming the seismic demands into relative displacement between the GLRS and the LFRS...
- ...dissipating energy and lowering seismic demands

NHERI Lehigh Joint Researcher Workshop w/ UCSD & SimCenter, 23-24 September, 2019

IFAS Prototype

Prototype IFAS System

IFAS Components

Subassemblage Testing: NEES@Lehigh

Test

NHERI Lehigh Joint Researcher Workshop w/ UCSD & SimCenter, 23-24 September, 2019

Full-Scale IFAS Testing: BRB

Full-Scale IFAS Testing: BRB

Full-Scale IFAS Testing: BRB

Full-Scale IFAS Testing: RB

Full-Scale IFAS Testing: FD

Carbon Fiber Reinforced RB

FD

Full-Scale IFAS Testing: FD

Bumper Impact Tests: NHERI@Lehigh

Bumper Impact Tests: NHERI@Lehigh

Bumper Impact Tests: NHERI@Lehigh

Analytical Research

Analytical Results

Shake Table Test Structure

4-story reinforced concrete building

- Half-scale
- Provide direct comparison between IFAS and traditional
- Rocking Walls for repeatability

NHERI Lehigh Joint Researcher Workshop w/ UCSD & SimCenter, 23-24 September, 2019

Shake Table Test Specimen

Test specimen description

• LFRS eccentricity was purposely introduced for torsional response

Transverse

IFAS Shake Test Installation

Half-Scale 4story Precast Rocking Shear Wall Structure

Instrumentation

Project Testing Phase

- 🔶 String pot
- Linear pot
- 🔺 Load cell
- Pressure transducer
- Strain gage
- *Note*: B2 layout also for Col. A3, C1, C2, C3 in the 1st story.

Student Participation

Specimen Construction/Instrumentation

Lostra, UA REU

Zhang, UA PostDoc

Zhang, UA Phd

Kuzuku, UA Phd

IFAS Shake Table Response: NEES@UCSD

Shake Table Test Response

Bumper behavior

Shake Table Testing: NEES@UCSD

Shake Table test Rocking of Main(North) wall

PHASE I VS PHASE II

Shake Table Testing: NEES@UCSD

Berkeley BE05 MCE Traditional system vs IFAS

PLAN VIEW COMPARISON

Shake Table Test Results: NEES@UCSD

Comparison to Traditional Structure

Project 3: Steel Seismic Collectors

NSF ECI / ENH: Advancing Knowledge on the Performance of Seismic Collectors in Steel Building Structures

NHERI @ UCSD

Vertical-plane SFRS elements provide a laterally stiff load path to the foundation

Seismic Collectors serve as the critical link between the diaphragm and the vertical elements

Floor diaphragms transfer inertial forces laterally from the floor slab and attached elements

Load Path from the seismic mass to the foundation

Project 3: Research Approach

Analytical Work Compression Load Path

Analytical Work Limit State Sequence: Compression

Body Force Producing Compression in the Collector

Collector Connection Limit States

Structures Congress 2019

Orlando, FL | April 24-27

Roof Collector Members Stability Modes

Contour Plots of Lateral Displacement

Fabricated Specimen: Top Flange Weld (TFW)

Fabricated Specimen: All Flange Weld (AFW)

Test Set Up (3D Model)

UCSD Shake Table Specimen

Thank You!