Hands-on Laboratory Exercises: RTHS; HybridFEM Numerical Sims

James Ricles
NHERI Lehigh Director

Thomas Marullo
IT Systems Administrator

NHERI Lehigh EF
Outline

• Large-scale nonlinear viscous damper characterization test
• RTHS of a RC building with nonlinear viscous damper
• Numerical simulations using HybridFEM to experience the various features
Groups

<table>
<thead>
<tr>
<th>Groups</th>
<th>2:35 – 3:15 PM</th>
<th>3:15 – 4:00 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-RED</td>
<td>Control Room – A121</td>
<td>A104</td>
</tr>
<tr>
<td>2-BLUE</td>
<td>A104</td>
<td>Control Room – A121</td>
</tr>
</tbody>
</table>

Back of your name tag has a group label and color
Outline

• Large-scale nonlinear viscous damper characterization test
 • RTHS of a RC building with nonlinear viscous damper
 • Numerical simulations using HybridFEM to experience the various features
Damper Characterization Test

Nonlinear fluid viscous damper

- Make: Taylor Devices Inc.
- Nominal force capacity 600 kN
- Max stroke ±125 mm
- Theoretical force-velocity:
 \[f_D = C_D sgn(\dot{u}_D) |\dot{u}_D|^{\alpha} \]
- Manufacturer provided
 \[C_D = 773 \, kN \cdot \left(\frac{s}{m} \right)^{\alpha} \] and \(\alpha = 0.4 \)
- Operating temperature:
 \(-6.7^\circ C \) to \(+54.4^\circ C \) (+20°F to +130°F)
Full-Scale Nonlinear Viscous Dampers

Characterization testing

Damper testbed

Loading Protocol

Damper force - deformation

Damper force - velocity
Procedure for Damper Characterization

1. Develop a damper model
2. Assign model parameters
3. Predict model response
4. Calculate error between model and measured experimental data
5. Revise parameters to minimize error
6. Predefined displacement tests
Input Displacement and Test Matrix

![Graph showing input displacement and test matrix](image)

<table>
<thead>
<tr>
<th>Amplitude mm (in.)</th>
<th>Frequency (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>76.2 (3.0)</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>119.7 (4.7)</td>
</tr>
<tr>
<td>239.4 (9.4)</td>
<td>1.0</td>
</tr>
<tr>
<td>478.8 (18.9)</td>
<td>1.5</td>
</tr>
<tr>
<td>718.2 (28.3)</td>
<td></td>
</tr>
</tbody>
</table>

Numbers in the cells are max velocities in mm/s (in/s)
Actuator Hydraulic Power Curve

Power curve for 1700 kN actuators at 3000 psi

- 1 valve
- 2 valves
- 3 valves
- Max demand

Force (kN) vs. Velocity (m/s)
Nonlinear Maxwell Damper Model

- Damper shows strong frequency dependent behavior
- Usually modeled using a nonlinear Maxwell model

\[
\begin{align*}
K_D & \quad u_K \\
C_D, \alpha & \quad u_C, f_C \\
u_D, f_D
\end{align*}
\]

Total damper deformation: \(u_D = u_k + u_c \)
Total damper velocity: \(\dot{u}_D = \dot{u}_k + \dot{u}_c \)
Damper force:
\[
f_D = f_K = K_D u_k \Rightarrow \dot{u}_K = \frac{f_D}{K_D}
\]
\[
f_D = f_C = C_D sgn(\dot{u}_C)|\dot{u}_C|^\alpha \Rightarrow \dot{u}_C = \left| \frac{f_D}{C_D} \right|^\frac{1}{\alpha} sgn(f_D)
\]

Governing equation (nonlinear ODE)
\[
\dot{f}_D + K_D \left| \frac{f_D}{C_D} \right|^{\frac{1}{\alpha}} sgn(f_D) = K_D \dot{u}_D
\]
Solution of nonlinear ODE

Governing equation (nonlinear ODE): \(\dot{f}_D + K_D \left| \frac{f_D}{C_D} \right|^{\frac{1}{\alpha}} \text{sgn}(f_D) = K_D \dot{u}_D \)

Simulink model for solution of the nonlinear ODE

Solver: variable-step Dormand-Prince solver (ode45) which belongs to 5th order Runga-Kutta family
Determination of Model Parameters

- Identify K_D, C_D, and α so that the error between the model prediction and experimental data are minimized
- We use particle swarm optimization (PSO) algorithm (Kennedy and Eberhart, 1995; Ye and Wang, 2007; Chae, 2011)
 - The algorithm in Matlab script is available for users
- Objective function: Normalized root mean square error

$$F_{obj}^{K_D, C_D, \alpha} = \sqrt{\frac{\Sigma_{n=1}^{N} (f_{Dn}^e - f_{Dn}^p)^2}{\Sigma_{n=1}^{N} (f_{Dn}^e)^2}}$$

- f_{Dn}^e and f_{Dn}^p are experimental and predicted damper forces, respectively
- N is the total number of samples
Measured vs Model Prediction

Characterization testing

Damper testbed

Loading Protocol

Damper force - deformation

Damper force - velocity

2 ramp up cycles
7 stable full cycles
3 ramp down cycles
Outline

• Large-scale nonlinear viscous damper characterization test

• RTHS of a RC building with nonlinear viscous damper

• Numerical simulations using HybridFEM to experience the various features
Building Description – Location and Layout

- Retail store located in Los Angeles
- Assumed to be on stiff soil
- Spectral accelerations S_{DS} and S_{D1} are 1.0 and 0.6, respectively
- Building is designed based on the ASCE-10 and ACI 318 Code
Building Description - Details

- Nominal concrete compressive strength of 4 ksi
- Nominal reinforcement strength of 60 ksi
- Seismic reinforcement detailing
- Weak beam-strong column

Steel Reinforcement Ratio, p

- 0.0058
- 0.0062
- 0.0277
Building Description - Properties

<table>
<thead>
<tr>
<th>Floor</th>
<th>Floor Mass (kip-sec²/in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.239</td>
</tr>
<tr>
<td>2</td>
<td>0.238</td>
</tr>
</tbody>
</table>

Modal Properties

<table>
<thead>
<tr>
<th>Mode</th>
<th>Period (sec)</th>
<th>Inherent Damping</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.43</td>
<td>0.03</td>
</tr>
<tr>
<td>2</td>
<td>0.12</td>
<td>0.03</td>
</tr>
</tbody>
</table>
RTHS Overview

Integration of equations of motion

\[
M\ddot{X}_{n+1} + C\dot{X}_{n+1} + R^a_{n+1} + R^e_{n+1} = F_{n+1}
\]

Effective force

\[
F_{n+1} = X^e_{n+1}
\]

Ground acceleration

Analytical substructure

FE model

Servo-hydraulic actuator control

Experimental substructure

Nonlinear damper

Simulation coordinator

Ramp generator and kinematic transformation for each actuator DOF

ATS compensator

Servo controller

Real time response

RTHS configuration

Prototype floor plan

- EQ record scaled to MCE hazard level
- Time step: $\Delta t = \frac{3}{1024}$ s
Analytical Substructure - Fiber Material Properties

Concrete properties

<table>
<thead>
<tr>
<th>Member</th>
<th>Prop</th>
<th>Columns</th>
<th>1(^{\text{st}}) story beams</th>
<th>2(^{\text{nd}}) story beams</th>
<th>Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confined concrete</td>
<td>$K_c f'_c$</td>
<td>5156psi</td>
<td>4360psi</td>
<td>4474psi</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>ε_o</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>$0.2K_c f'_c$</td>
<td>1030psi</td>
<td>872psi</td>
<td>895psi</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>ε_u</td>
<td>0.045</td>
<td>0.015</td>
<td>0.002</td>
<td>-</td>
</tr>
<tr>
<td>Unconfined concrete</td>
<td>f'_c</td>
<td>4768psi</td>
<td>4240psi</td>
<td>4203psi</td>
<td>4000psi</td>
</tr>
<tr>
<td></td>
<td>ε_o</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>$0.2f'_c$</td>
<td>953psi</td>
<td>848psi</td>
<td>841psi</td>
<td>805psi</td>
</tr>
<tr>
<td></td>
<td>ε_u</td>
<td>0.027</td>
<td>0.014</td>
<td>0.009</td>
<td>0.004</td>
</tr>
</tbody>
</table>

![Modified Kent-Park Model](image)

Modified Kent-Park Model – Cyclic Behavior
Analytical Substructure - Fiber Material Properties

- **Steel properties**

<table>
<thead>
<tr>
<th>Yield stress (ksi)</th>
<th>Modulus of elasticity (ksi)</th>
<th>Strain hardening ratio</th>
<th>Ro</th>
<th>cR1</th>
<th>cR2</th>
<th>a1</th>
<th>a2</th>
<th>a3</th>
<th>a4</th>
<th>sigInit</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>29000</td>
<td>0.01</td>
<td>15</td>
<td>0.925</td>
<td>0.15</td>
<td>-0.05</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Giuffre-Menegotto-Pinto – Cyclic Behavior
RTHS Configuration

- Analytical substructure modeled using force-based elements for beams and columns with fixed number of iterations, and linear elastic elements for diagonal bracing
- Fiber elements: Mass and tangent stiffness proportional damping
- Elastic elements: Rayleigh proportional damping
- Time step: $\Delta t = \frac{3}{1024}$ s
- MKR-\(\alpha\) method (parameter ρ_∞)
 - Model-based integration parameters (α_1, α_2, α_3) determined from characterization test data
- ATS Compensator for adaptive time delay and amplitude compensation
Parameters to Consider for RTHS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground Motion (scaled to MCE)</td>
<td>1994 Northridge EQ, Canyon Country Recording Station, Component - RSN960_NORTHR_LOS270 1999 Kocaeli, Turkey EQ, Yarimca Station, Component - RSN1176_KOCAELI_YPT150 H2</td>
</tr>
<tr>
<td>• Far Field</td>
<td></td>
</tr>
<tr>
<td>• Near Field</td>
<td></td>
</tr>
</tbody>
</table>
| Steel Reinforcement Ratio, \(\rho \) | 0.0277 \(^{(1)}\) or 0.0166 \(^{(2)}\)
0.0062 \(^{(1)}\) or 0.0047 \(^{(2)}\)
0.0058 \(^{(1)}\) or 0.0043 \(^{(2)}\) |
| • Columns | |
| • 1\(^{st}\) Floor Beams | |
| • Roof Beams | |
| Location of Damper | 1\(^{st}\) or 2\(^{nd}\) Floor |
| Numerical Damping, \(\rho_\infty \) | 0.25 or 0.0 |

\(^{(1)}\) Original value of longitudinal reinforcement
\(^{(2)}\) Reduced value of longitudinal reinforcement (75% of original)
As-built Response

Floor Lateral Displacement Time History

Far Field Record

Near Field Record
Summary of the floor drift

<table>
<thead>
<tr>
<th>Steel ratio</th>
<th>1<sup>st</sup> story (%)</th>
<th>2<sup>nd</sup> story (%)</th>
<th>1<sup>st</sup> story (%)</th>
<th>2<sup>nd</sup> story (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>1.78</td>
<td>2.85</td>
<td>5.10</td>
<td>5.75</td>
</tr>
<tr>
<td>Reduced</td>
<td>2.69</td>
<td>4.49</td>
<td>10.12</td>
<td>11.28</td>
</tr>
</tbody>
</table>
As-built Response – Far Field EQ

Moment-Curvature Hysteretic Response at Ends of Members

Far Field EQ

Near Field EQ
RTHS: Retrofit Response – Far Field EQ

Floor displacement time history

Floor displacements (damper at 1st story) $\rho=0.027$

Floor displacements (damper at 2nd story) $\rho=0.027$

Floor displacements $\rho=0.016$

Displacement (m)

Time (sec)
RTHS: Retrofit Response – Near Field EQ

Floor displacement time history

Floor displacements (damper at 1st story) $\rho_{\text{columns}} = 0.027$

Floor displacements (damper at 2nd story) $\rho_{\text{columns}} = 0.027$

Floor displacements (damper at 1st story) $\rho_{\text{columns}} = 0.016$

Floor displacements (damper at 2nd story) $\rho_{\text{columns}} = 0.016$
RTHS: Retrofit Response

Moment-Curvature Hysteretic Response at Ends of Members, Damper at 1st Story

Far Field EQ

Near Field EQ
RTHS: Retrofit Response

Moment-Curvature Hysteretic Response at Ends of Members, Damper at 2nd Story

Far Field EQ

Near Field EQ
RTHS: Retrofit Response – Far Field EQ

Damper Response

Damper response ($\rho=0.027$)

- Blue: Damper at 1st story
- Red: Damper at 2nd story

Damper response ($\rho=0.016$)

- Blue: Damper at 1st story
- Red: Damper at 2nd story
Outline

• Large-scale nonlinear viscous damper characterization test
• RTHS of a RC building with nonlinear viscous damper
• Numerical simulations using HybridFEM to experience the various features
Numerical Simulation Exercise

- Room A104 Computer Stations for Lehigh HybridFEM 5.0
 - Various input configuration and hazard loading files for MATLAB
 - PDF Manual is in the folder
 - You will edit and run the script, `ModelRunner.m` to select input and hazard files
 - **Tcl files** are the input files
 - **Txt files** are the forces (EQ and Wind)
 - Building and Cantilever models
 - `GenerateColumnModel.m` will create an N-story “fun” column model
 - `CreateHFEMOutDataStructure.m` file is a MATLAB script that is automatically executed when you run `ModelRunner.m` and creates a *.mat file that contains all the input/output data
 - Feel free to make any changes in the input file and run it. For example, you can change the mass, gravity load, hazard type and model dimensions.
Numerical Simulation Exercise

- All beam column elements are modeled using displacement-based fiber elements
- Lean-on column is modeled using linear elastic beam-column elements
- $P - \Delta$ effects are included
- Various integration algorithms can be used
- Input file, `Model_Building.tcl`
- In the input file, any line preceded by a “#” is treated as a comment line
- EQ or Wind forcing function file
Numerical Simulation Exercise

One story building subjected to wind

M=400 KN. sec²/M

Mode No.1 [Period = 1.1857919510 sec]

Force

Displacement

10^{-3}
Numerical Simulation Exercise

Cantilever subjected to step load

\[M = 0.5 \text{ KN. sec}^2/\text{M} \]
Numerical Simulation Exercise

- Reconfigurable “Fun” Model
- Column is modeled using linear elastic beam-column element
- GenerateColumnModel.m
- Column10_Wind_Nodes.tcl
- EQ or Wind forcing function file
How to Simulate the Model
How to Simulate the Model

%% Input and EQ Configuration
INF_FILE = 'cantilever_2DNodes.txt';
EQ_FILE = 'EQ_0687004-00471.txt';
Wind_FILE = 'Wind_0687004-00471.txt';
% Wind_FILE: To use a Wind load, you need to include it inside the Input
% Configuration file. See Model_WindRunner.tcl example for details.

TARGET = 'Matlab';
RUNMODE = 'Simulation';

%% Code
% Matlab

figure; % Create a new figure
plot(x, y); % Plot the data
xlabel('X-axis label'); % Set the x-axis label
ylabel('Y-axis label'); % Set the y-axis label
title('Title of the plot'); % Set the title of the plot
grid on; % Display grid lines

% Simulink

%% Code
% Simulink

figure; % Create a new figure
plot(x, y); % Plot the data
xlabel('X-axis label'); % Set the x-axis label
ylabel('Y-axis label'); % Set the y-axis label
title('Title of the plot'); % Set the title of the plot
grid on; % Display grid lines

%% Code
% Text display

figure; % Create a new figure
text(x, y, 'Text display'); % Display text
xlabel('X-axis label'); % Set the x-axis label
ylabel('Y-axis label'); % Set the y-axis label
title('Title of the plot'); % Set the title of the plot
grid on; % Display grid lines

How to Simulate the Model
How to Simulate the Model
How to Simulate the Model

[Image of MATLAB interface with a dialogue box asking if you want to display node numbers]
How to Simulate the Model
How to Simulate the Model
How to Simulate the Model

[MATLAB GUI interface shown with a focus on the ModelRunner.m file and the command window output, highlighting the numerical simulation details]
How to Simulate the Model
How to Simulate the Model
Simulation Results

• By default, the program plots the displacement, velocity, acceleration, and restoring forces at all unrestrained (free) DOFs

• Using CreateHFEMOutDataStructure.m, you can generate Node and Element data to see:
 • Plots of section force deformations
 • Story drifts

• *.mat file generated after simulations contain all the input/output data
Some Example Results
Thank you