Example Past Projects at NHERI Lehigh

Richard Sause, PhD, PE

ATLSS Director & NHERI Lehigh EF Co-PI

Example Past Projects

Experiment	Capability	
3-story building with piping system	Multi-directional real-time hybrid simulation	
Self-centering moment-resisting frame (SC-MRF)	Large-scale hybrid simulation	
Self-centering concentrically-braced frame (SC-CBF)	Large-scale hybrid simulation	
Real-time testing of structures with dampers	Large-scale real-time hybrid simulation with multiple experimental substructures	
Seismic hazard mitigation using passive damper systems	Predefined displacement dynamic testing (for characterization) Large-scale real-time hybrid simulations	
Tsunami-driven debris	Dynamic testing (impact loading)	
Post-tensioned coupled shear wall system	Complex large-scale multi-directional predefined force and displacement quasi-static testing	
Inertial force-limiting floor anchorage systems for buildings	Predefined displacement dynamic testing (for characterization)	
Cross-Laminated Rocking Wall-Floor Diaphragm Systems	Multi-directional quasi-static and hybrid simulation	

DESIGNSA

NG COMMUNITY `

Multi-Directional Large-Scale Real-Time Hybrid Simulation of 3-story Building with Piping System

Multi-Directional Large-Scale Real-Time Hybrid Simulation

Multi-Directional Large-Scale Real-Time Hybrid Simulation of 3-story Building with Piping System

Self Centering Steel Moment-Resisting Frame (SC-MRF) Systems Princeton, Purdue, Lehigh, NCREE

Large-Scale Hybrid Simulation

6-story : 6 bays @ 30 ft = 180 ft

Plan of Prototype Building

SC-MRF Experimental Substructure (Floor Diaphragm, Gravity System, Mass, Inherent Damping in Analytical Substructure)

Large-Scale Hybrid Simulation (SC-MRF)

REAL-TIME MULTI-DIRECTIONAL SIMULATION

П

AT/LSS

UNIVERSITY.

Self Centering Steel Concentrically-Braced Frame (SC-CBF) Systems Princeton, Purdue, Lehigh, NCREE

Large-Scale Hybrid Simulation

6-story : 6 bays @ 30 ft = 180 ft

Plan of Prototype Building

SC-CBF Experimental Substructure (Floor Diaphragm, Gravity System, Mass, Inherent Damping in Analytical Substructure)

Large-Scale Hybrid Simulation (SC-CBF)

Predefined Displacement Dynamic Testing for Characterization

REAL-TIME MULTI-DIRECTIONAL SIMULATIO

ERSITY

LSS

Large-Scale Real-Time Hybrid Simulation

6-story : 6 bays @ 30 ft = 180 ft

NFES

Plan of Prototype Building

ERSITY.

Large-Scale Real-Time Hybrid Simulation

(MRF, Floor Diaphragm, Gravity System, Mass, Inherent Damping in Analytical

Large-Scale Real-Time Hybrid Simulation

(Floor Diaphragm, Gravity System, Mass, Inherent Damping in Analytical Substructure)

Experimental Substructure: MRF and Braced Frame with Dampers

Impact Forces from Tsunami-Driven Debris University of Hawaii, Oregon State University, Lehigh

Dynamic Testing (Impact Loading)

Test Setup with Cargo Shipping Container Debris

High Speed Video of Impact of Cargo Shipping Container on Structure

Post-Tensioned Coupled Shear Wall System Notre Dame, University of Texas at Tyler

Complex Large-Scale Predefined Multi-Directional Force & Displacement (Quasi-Static) Testing

RC coupled shear wall test specimen with multi-directional loading. Upper 5 stories of 8-story building simulated with vertical force-controlled actuators. 1 displacement-controlled and 10 force-controlled (11 total) used for test.

Joint strains measured by DIC (S. Pakzad)

RC coupled shear wall pier vertical deformation measured by Digital Image Correlation (DIC) (M. McGinnis)

Post-Tensioned Coupled Shear Wall System Notre Dame, University of Texas at Tyler

Complex Large-Scale Predefined Multi-Directional Force & Displacement (Quasi-Static) Testing

Inertial Force Limiting Floor Anchorage Systems for Buildings University of Arizona, UCSD, Lehigh

Predefined Displacement Dynamic Testing for Characterization

BRB was also Studied

Floor Anchorage Hysteretic Response

Inertial Force Limiting Floor Anchorage Systems Buildings University of Arizona, UCSD, Lehigh

Complimentary Shake Table Tests at NHERI UCSD

EQ 14: Berkeley MCE - Floor 4

Collaborative Research: Development and Validation of Resilience-Based Seismic Design Methodology for Tall Wood Buildings

(CMMI 1636164) Colorado School Mines (Shiling Pei), (CMMI 1635156) Washington State (James Dolan), (CMMI 1635227) Lehigh University (James Ricles)

Overview

- Design and construct a low-damage, resilient 3-D CLT building sub-assembly
- Investigate the lateral-load response and damage of SC-CLT walls under multidirectional loading
- Investigate the associated response of the CLT floor diaphragm, collector beams, and gravity load system within this 3-D sub-assembly under multidirectional loading

Isometric and long-side view of 0.625-scale test sub-assembly

Amer, A., Sause, R., and Ricles, J. (2023) "Experimental Response and Damage of SC-CLT Shear Walls under Multidirectional Cyclic Lateral Loading." Journal of Structural Engineering. 10.1061/JSENDH/STENG-12576.

Collaborative Research: Development and Validation of Resilience-Based Seismic Design Methodology for Tall Wood Buildings

- (CMMI 1636164) Colorado School Mines (Shiling Pei), (CMMI 1635156) Washington State (James Dolan), (CMMI 1635227) Lehigh University (James Ricles)
- Test Sub-Assembly Components and Connection Details

UNIVERSITY,

- Design considering force and/or deformation demands expected during the multidirectional lateral-load tests
- 3.0% story-drift as performance objective for damage initiation to sub-assembly components and connection details

Amer, A. (2023) "Multidirectional Experimental Performance of a Seismically Resilient Self-Centering Cross-Laminated Timber Shear Wall System." PhD Dissertation, Lehigh University, Bethlehem, PA.

REAL-TIME MULTI-DIRECTIONAL SIMULATIO

LSS

Collaborative Research: Development and Validation of Resilience-Based Seismic Design Methodology for Tall Wood Buildings

(CMMI 1636164) Colorado School Mines (Shiling Pei), (CMMI 1635156) Washington State (James Dolan), (CMMI 1635227) Lehigh University (James Ricles)

Multidirectional Displacement Control Scheme

- In-plane and out-of-plane story-drifts and vertical motion of the test sub-assembly
- Control algorithm for 3-D large-scale lateral-load testing with flexible diaphragms
- Kinematic relationship between the control node, feedback displacement sensors, and actuator command displacements

Amer, A. (2023) "Multidirectional Experimental Performance of a Seismically Resilient Self-Centering Cross-Laminated Timber Shear Wall System." PhD Dissertation, Lehigh University, Bethlehem, PA.

Collaborative Research: Development and Validation of Resilience-Based Seismic Design Methodology for Tall Wood Buildings

(CMMI 1636164) Colorado School Mines (Shiling Pei), (CMMI 1635156) Washington State (James Dolan), (CMMI 1635227) Lehigh University (James Ricles)

Experimental Substructure (0.625-Scale)

South Wall Panel

North Wall Panel

Comparison of Target vs. Measured Subassembly Drift

ERSITY

LSS

REAL-TIME MULTI-DIRECTIONAL SIMULATIO

Example Recent and Current Research Projects at NHERI Lehigh

Liang Cao, PhD

NHERI Lehigh EF Research Scientist

Recent and Current Projects at NHERI Lehigh EF

Project	Possures Tasting Method	PI	Institution of PI
	Resource,Testing Method	PI	Institution of PI
CMMI 1463252, 1463497: Collaborative Research: Semi-	Damper test beds, CPSSL; characterization	Simon Laflamme,	Iowa State University
Active Controlled Cladding Panels for Multi-Hazard	testing, RTHS	James Ricles	Lehigh University
Resilient Buildings			
CMMI 1636164, 1635156 and 1635227: Collaborative	High bay lab, DIC; multi-directional quasi-	Shiling Pei,	Colorado School of Mines,
Research: A Resilience-based Seismic Design	static cyclic testing, hybrid simulation	James Dolan,	Washington State Univ
Methodology for Tall Wood Buildings		James Ricles	Lehigh University
CMMI 1662886 and 1662964: Collaborative Research:		Maria Garlock,	Princeton University
Shear-Buckling Mechanics for Enhanced Performance	High bay lab, DIC; quasi-static testing	Spencer Quiel	Lehigh University
of Thin Plates			
CMMI 1662816: Advancing Knowledge on the	high bay lab, DIC; mixed-mode control		
Performance of Seismic Collectors in Steel Building	quasi-static cyclic testing, hybrid simulation	Robert Fleischman	University of Arizona
Structures			
CMMI 1926326: Collaborative Research: Frame-Spine	High bay lab, damper test beds, CPSSL,	Larry Fahnestock	University Illinois
System with Force-Limiting Connections for Low-	DIC; quasi-static cyclic testing, hybrid	Richard Sause	Lehigh University
Damage Seismic Resilient Buildings RII Track-4: Quantifying Seismic Resilience of Multi-	simulation, RTHS		
	High-bay lab, damper test beds, CPSSL;	Soott Homeou	Liniversity of Oklahama
Functional Floor Isolation Systems through Cyber- Physical Testing	characterization testing, RTHS	Scott Harvey	University of Oklahoma
CMMI 2036131: Investigation of a Novel Pressurized			
Sand Damper for Sustainable Seismic and Wind	High-bay lab, damper test beds, CPSSL;	Nicos Makris	Southern Methodist
Protection of Buildings	characterization testing, RTHS	INICOS MARTIS	University
RTHS of Soil-Structure-Foundation Systems Using	High-bay lab, damper test beds, CPSSL	James Ricles	Lehigh University
Neural Networks ⁽¹⁾			· · · · ·
		Arindam Chowdhury &	Florida International
Real-Time Hybrid Simulation of Wind-induced	WOW FIU Wind Tunnel, High-bay lab,	Amal Elawady,	University
Aerodynamic Vibrations ⁽¹⁾	damper test beds, CPSSL	James Ricles & Liang Cao	Lehigh University
TI 2222222 STTD Dhase Is Development of an imposed in			<u> </u>
TI 2222232: STTR Phase I: Development of an Innovative	Domportant hada CDSSL sharestari-stica	JP Binard,	Precast Systems
Ultra High Performance Concrete Foundation System	Damper test beds, CPSSL; characterization	Muhannad	Engineering, LLC
with Bio-inspired Surfaces to Support Renewable Offshore Wind Turbines	testing, RTHS	Suleiman	Lehigh University

(1) Capacity Building Projects

DESIG

Recent and Current Projects at NHERI Lehigh EF

Project	Resource, Testing Method	PI	Institution of PI
TI 2141073: PFI-TT: Self-Centering Seismic Dampers for Resilience-Based Earthquake Design of Buildings	High-bay lab, damper test beds, CPSSL; characterization testing, RTHS	Osman Ozbulut, Robert Archer	University of Virginia
CMMI 2040665: NSF Convergence Accelerator Track D: Intelligent Surveillance Platform for Damage Detection and Localization of Civil Infrastructure	High bay lab, DIC; quasi-static testing	Claudia Marin	Howard University
CMMI 1943917: CAREER: Mitigation of Seismic Risk to Critical Building Contents via Optimum Nonlinear 3D Isolation	High-bay lab, damper test beds, CPSSL; characterization testing, RTHS	Scott Harvey	University of Oklahoma
CMMI 2237696: CAREER: Data-Driven Control of High- Rate Dynamic Systems	High-bay lab, damper test beds, CPSSL; characterization testing, RTHS	Austin Downey	University of South Carolina
CMMI 2145665: CAREER: Accelerating Real-time Hybrid Physical-Numerical Simulations in Natural Hazards Engineering with a GPU-driven Paradigm	High-bay lab, damper test beds, CPSSL, RTHS	Barbara Simpson	Oregon State University

13 of 20 funded projects are from external researchers, including 3 recent CAREER awards!

Collaborative Research: Semi-Active Controlled Panel Cladding to Improve the Performance of Buildings under Multiple Hazards

(CMMI 1463252) Iowa State University (Simon Laflamme)

Overview

- Improve performance of buildings for multiple hazards <u>using controlled variable</u> <u>friction cladding panel connectors</u>
- Hazards: Earthquake, Wind (NHERI UF and NHERI FIU)
- Scope
 - Design cladding connectors and control laws
 - Construct prototype connector, perform characterization testing
 - Perform <u>large-scale RTHS</u> to validate numerical models and results

Collaborative Research: Semi-Active Controlled Panel Cladding to Improve the Performance of Buildings under Multiple Hazards

(CMMI 1463497) Lehigh University (James Ricles)

Overview

- Improve building performance for multiple hazards <u>using passive energy</u> <u>dissipating cladding connectors combined with supplemental damper systems</u>
- Hazards: Earthquake, Wind (NHERI UF and NHERI FIU)

Scope

- Design prototype buildings of various heights
- Perform nonlinear time history analysis to assess performance
- Perform <u>large-scale RTHS</u> to validate numerical models and results

RTHS Substructures: Tall Building Subjected to Multi-Natural Hazards

Analytical Sub. Key features:

- 7902 DOF
- 2974 Elements
 - 2411 Nonlinear Explicit Force-based fiber elements
 - > 11 Nonlinear Explicit Maxwell Elements(1,2) with real-time on-line model updating (dampers placed in each outrigger at 20th, 30th, & 40th floors)
 - 552 Nonlinear truss elements
- Reduced Order Modeling
- Geometric nonlinearities
- Mass
- Inherent damping of building
- (1) Al-Subaihawi, S. (2023). *Real-time Hybrid Simulation of Complex Structural Systems Subject to Multi-Hazards*. PhD Dissertation, CEE Dept., Lehigh University.
- (2) Al-Subaihawi, S., Ricles, J., and S. Quiel. (2022). "Online Explicit Model Updating of Nonlinear Viscous Damper for Real Time Hybrid Simulation," *Earthquake Engineering and Soil Dynamics*, Vol. 154, https://doi.org/10.1016/j.soildyn.2021.107108.

Full-Scale Nonlinear Viscous Dampers Characterization testing

3-D Real-time Hybrid Simulation 1989 Loma Prieta EQ Bidirectional Ground Motions Scaled to MCE

Earthquake (MCE) hazard. VIDEO 2: https://www.youtube.com/watch?v=laX0A1aIRBo

Al-Subaihawi, S., Marullo, T., Cao, L., Kolay, C. and J.M. Ricles, (2019) "3D Multi-Hazard Real-Time Hybrid Simulation Studies of a Tall Building with Damped Outriggers".

Wind Loading Aerodynamic Wind Testing @ FIU WOW

 Aerodynamic wind testing at the NHERI FIU WOW to obtain wind pressure time histories distributed on the building.

Courtesy: Amal Elawady and Arindam Chowdhury, FIU

RTHS Substructures

Analytical Sub. Key features:

- 7903 DOF
- 2975 Elements
 - > 2411 Nonlinear Explicit Force-based fiber elements
 - > 11 Nonlinear Explicit Maxwell Elements⁽¹⁾ with real-time model updating (dampers placed in each outrigger at 20th, 30th, & 40th floors)
 - 553 Nonlinear truss elements
- Geometric nonlinearities
- Mass
- Inherent damping of building

Analytical Substructure

LEHIGH

ΕR

SITY

UΝ

REAL-TIME MULT-DIRECTIONAL SIMULATION

DESIGNSA A NATURAL HAZARDS ENGINEERING COMMUNITY

Collaborative Research: Semi-Active Controlled Panel Cladding to Improve the Performance of Buildings under Multiple Hazards

(CMMI 1463497) Lehigh University (James Ricles)

With Supplemental Dampers in Outrigger Systems for Tall Buildings

- Major Findings
 - Nonlinear viscous dampers in outrigger systems combined with a TMD can be effective in improving multi-hazard performance of tall buildings.
 - Attention must be given to prescribing sufficient damper stiffness relative to that of members in load path.

Response Quantity	Reduction using passive controlled damped outriggers		
Response quantity	Wind	EQ	
Maximum story drift	10%	22%	
Maximum absolute acceleration	35%	25%	

20th floor

30th floor 40th floor

10

Al-Subaihawi, S., Kolay, C., Thomas Marullo, Ricles, J. M. and S. E. Quiel. (2020) "Assessment of Wind-Induced Vibration Mitigation in a Tall Building with Damped Outriggers Using Real-time Hybrid Simulations," *Engineering Structures*, 205, <u>https://doi.org/10.1016/j.engstruct.2019.110044</u>.

Collaborative Research: 3D Real-time Aeroelastic Hybrid Simulation of Wind-induced Vibrations on a Tall Building

(CMMI 2037899) Florida International University (Amal Elawady, Arindam Chowdhury), (2037771) Lehigh University (James Ricles)

Overview

- Develop novel 3D real-time aeroelastic hybrid simulation technologies to accurately assess wind-induced aeroelastic response of civil structures
- Understand the effect of wind-structure interaction
- Provide experimental validation of concepts for wind hazards mitigation

RTAHS Substructure

Analytical Substructure Determines restoring forces of structure based on displaced position obtained from integration algorithm <u>Aeroelastic Substructure</u> (Aeroelastic @1:150 scale): Measure wind pressures based on displaced position obtained from integration algorithm

3D RTAHS Application – Test 1: Linear model

3D Real-time Aeroelastic Hybrid Simulation of a 1:150 Scale Wind Excited Building (210 mph Western Wind) 40-Story As-Built Structure, Linear Model

© 2023 Lehigh University - Thomas Marullo & Liang Cao

3D RTAHS Application – Test 1: Linear model

3D Real-time Aeroelastic Hybrid Simulation of a 1:150 Scale Wind Excited Building (210 mph Western Wind) 40-Story As-Built Structure, Linear Model

© 2023 Lehigh University - Thomas Marullo & Liang Cao

3D RTAHS Results: Aeroelastic Effect

Some cases showed significant change (up to 40%) in the mean Cp after considering the aeroelastic effect.

RTHS of Soil-Structure-Foundation Systems Using Neural Networks – Lehigh University, MTS

3-D RTHS of Multi-Story Building Soil-Structure-Foundation System: (a) System; and, (b) RTHS Framework with Analytical Substructure Comprised of FEM and Neural Network Model.

Collaborative Research: Semi-Active Controlled Panel Cladding to Improve the Performance of Buildings under Multiple Hazards

(CMMI 1463497) Lehigh University (James Ricles)

RTHS with Soil-Foundation-Structure Interaction Effects

- A neural network-based method trained using machine learning to include soil-foundation-structure interaction effects of systems in a hybrid simulation involving natural hazards has been developed to support the project.
- Overcomes the computational barrier of modeling soil and the foundation using conventional FEA (1000's DOF) in a real-time hybrid simulation.
- Performed 9 real-time hybrid simulations of a 40-story building with soil-foundation-structure interaction effects included in the experiment. Excellent results were achieved
- Outcomes include creation of tool for users; collaborating with TACC.

RTHS with Soil-Foundation-Structural System Interaction

Neural Network Model of Soil Training

Comparison with OpenSees

350

RTHS of Soil-Structure-Foundation System Roof Displacement Time History- Windward Direction

RII Track-4: Quantifying Seismic Resilience of Multi-Functional Floor Isolation Systems through Cyber-Physical Testing (OIA 1929151) University of Oklahoma (Scott Harvey)

Overview

- Investigate the multi-directional nonlinear dynamics of floor isolation systems (FISs) used to reduce seismic force demand and protect vital building contents.
- Rigorously evaluate a design methodology for multi-functional FISs incorporating building-FIS interactions.

RII Track-4: Quantifying Seismic Resilience of Multi-Functional Floor Isolation Systems through Cyber-Physical Testing

(OIA 1929151) University of Oklahoma (Scott Harvey)

Scope

- Perform large-scale FIS characterization tests to experimentally validate physics-based mathematical models.
- Perform large-scale real-time hybrid simulations to quantify the performance of FISs which incorporate multi-scale building-FIS interactions.
- Use of NHERI Lehigh Multidirectional Shake Table

Characterization Tests

Normalized shear vs displacement in X –direction: Multi-directional and rate dependency

Base Isolation of Server Cabinets – Rolling Pendulum Bearings Multi-directional RTHS Scheme

Server cabinet on top of RP isolation system

3-D Real-time Hybrid Simulation SMRF with RP Isolation System (FIS) @ 2nd Floor, Coalinga EQ Scaled to SLE

X-direction = 270 component, Z-direction = 360 component

3-D Real-time Hybrid Simulation of a 3-Story SMRF with 2nd Floor Rolling Pendulum Equipment Isolation System: 1983 Coalinga EQ Bidirectional Ground Motions Recorded at Cantua Creek School and Scaled to SLE Hazard Level.

Equipment Acceleration SMRF with RP Isolation System @ 2nd Floor

SMRF 2nd Floor Total Acceleration

Reduction in
Equipment Total
AccelerationX-DirectionZ-Direction81.3%68.9%

Investigation of a Novel Pressurized Sand Damper for Sustainable Seismic and Wind Protection of Buildings: (CMMI 2036131) **Southern Methodist University (Nicos Makris (PI))**

<u>Characterize</u> dynamic behavior under various temperatures
Perform <u>RTHS</u> to validate mitigation performance

Features Using NHERI Lehigh Underlined

⁽¹⁾ Makris, N., Palios, X., Moghimi, R. and Bousias, S. Pressurized sand damper for earthquake and wind engineering: Design, testing and characterization. Journal of Engineering Mechanics, ASCE, 2021, 147(4): 04021014

Characterization test of Pressurized Sand Damper

Investigation of a Novel Pressurized Sand Damper for Sustainable Seismic and Wind Protection of Buildings: (CMMI 2036131) **Southern Methodist University (Nicos Makris(PI))**

REAL-TIME MULTI-DIRECTIONAL SIMULATIO

Real-Time Multi-Directional Testing Facility

VERSITY.

.SS

RTHS of a Rocking Cross Laminated Timber (CLT) Structure Equipped with Pressurized Sand Damper

Investigation of a Novel Pressurized Sand Damper for Sustainable Seismic and Wind Protection of Buildings: (CMMI 2036131) **Southern Methodist University (Nicos Makris(PI))**

Real-time Hybrid Simulation of a CLT Rocking Wall System equipped with Pressurized Sand Dampers (PSD) subject to DBE Level Kocaeli Earthquake

Thank you

