Laboratory Exercises: 3D Nonlinear Multihazard RTHS of a Tall Building

Safwan Al-Subaihawi Graduate Research Assistant Lehigh University

Presentation

- Description of prototype 40 story tall building
- Multi-natural hazard description
- Real time hybrid simulation with online model updating
- Laboratory demonstration

3D Nonlinear Multi-hazard RTHS of a Tall Building

- 40-story (+4 basement) BRBF building in Los Angeles designed by SGH⁽¹⁾ for PEER Tall Building Initiative case studies – BRBFs with Outriggers
- Objectives of study ٠
 - Improve performance using nonlinear fluid viscous dampers with outriggers
 - Assess performance of structure under multi-hazards using RTHS
- Extend MKR- α integration algorithm and ATS actuator control to wind • natural hazard
- NL Viscous Dampers W -12.2m-12.2m -9.1m--9.1m--9.1m-Ν WF steel beams 12 2m Outrigger Outrigger columns 8.2m truss (at 20th, W 30th, 40th stories) 12.2m Box columns Ν **BRB** chevron WF steel column frame (BRBF) Floor Plan ⁽¹⁾ Moehle et al., PEER 2011/05

Outrigge

- Al-Subaihawi, S., Kolay, C., Thomas Marullo, Ricles, J. M. and S. E. Quiel, "Assessment of Wind-Induced Vibration Mitigation in a Tall Building with Damped Outriggers Using Real-time Hybrid Simulations," Engineering Structures, submitted for preparation, 2019. Kolay, C., Al-Subaihawi, S., Thomas Marullo, Ricles, J. M. and S. E. Quiel, "Multi-Hazard Real-Time Hybrid Simulation of a Tall Building with
- Damped Outriggers," International Journal of Lifecycle Performance Engineering, submitted for preparation, 2019.

Online model updating – explicit-based NL Maxwell model .

Multi-Hazard 3-D Nonlinear RTHS of Tall Building – EQ & Wind

- Bidirectional EQ ground motions
 - 1989 Loma Prieta EQ Saratoga Aloha Ave Station scaled to MCE (2500 year return period) hazard level
- Bidirectional wind loading
 - Wind speed of 110 mph, 700 MRI
 - Exposure B

RTHS Configuration

- Use of:
 - > Explicit MKR- α Integration Algorithm
 - Explicit Force-based Nonlinear Fiber Element Analytical Substructure
 - Adaptive Time Series Compensator for Actuator Control
 - Online Model Updating (OMU) explicit-based NL Maxwell model

MKR- α parameter and ATS coefficients

Natural	Time Step, ∆t (sec)	$ ho_{\infty}$	ATS Coefficients			Comments
Hazard			a_{0k}	a_{1k}	a_{2k}	Comments
Wind	$\frac{11}{1024}$	0.5	Fixed	Adaptive	Fixed	Wind: static component with dynamic gusts - 1 st mode linear response
EQ	$\frac{11}{1024}$	0.50	Adaptive	Adaptive	Adaptive	EQ: Multi-mode non- linear response

RTHS Substructures

Analytical Sub. Key features:

- 1317 Nodes
- 2974 Elements
 - > 2411 Nonlinear Explicit Force-based fiber elements
 - > 11 Nonlinear Explicit Maxwell Elements⁽¹⁾ with real-time model updating (dampers placed in each outrigger at 20th, 30th, & 40th floors)
 - 552 Nonlinear truss elements
- Geometric nonlinearities
- Mass
- Inherent damping of building

⁽¹⁾ Al-Subaihawi, S. (2020). *Real-time Hybrid Simulation of Complex Structural Systems Subject to Multi-Hazards*. PhD Dissertation, CEE Dept., Lehigh University.

Real-time Hybrid Simulation with Online Model Updating – Unscented Kalman Filter (UKF)

- <u>Real-time Model Updating</u>
 - > 40th story @ S-E corner: damper modeled physically
 - Remaining 11 dampers at 20th, 30th, and 40th stories modeled numerically with real-time model updating
 - Use real-time model updating via <u>Unscented Kalman</u> <u>Filter (UFK)</u> to numerically model the 11 dampers
 - Development of explicit, non-iterative Nonlinear Maxwell Damper Model for real-time hybrid simulation
 - Development of methodology to tune and implement the UKF for real-time identification of nonlinear viscous dampers

Al-Subaihawi, S. (2020). *Real-time Hybrid Simulation of Complex Structural Systems Subject to Multi-Hazards*. PhD Dissertation, CEE Dept., Lehigh University.

Real-time Hybrid Simulation with Online Model Updating – Unscented Kalman Filter (UKF)

3-D RTHS Results: Roof RMS Lateral Accelerations East to West 110 mph, 700 Year MRI Wind

RMS Roof Accelerations	(mG)

Floor	No Dampers		With Dampers		
	EW	NS	EW	NS	
40	7.0	31.5	6.9	16.2	

Peak Roof Accelerations (mG)

Floor	No Dampers		With Dampers	
	EW	NS	EW	NS
40	28.8	90.3	25.8	59.0

Dampers added to outriggers at 20th, 30th, and 40th stories:

- RMS Acceleration: 2% reduction in EW, 49% reduction in NS
- Peak Acceleration: 10% reduction in EW, 35% reduction in NS

Note: Outrigger frames are in NS direction

3-D RTHS Results: BRB Maximum Ductility 1989 Loma Prieta EQ Scaled to MCE

BRB Maximum Ductility Demand $(\Delta_{b}^{max}/\Delta_{y})$						
Story	No Dampers		With Dampers			
	EW	NS	EW	NS		
1	3.2	3.0	3.2	2.1		

Dampers added to outriggers at 20th, 30th, and 40th stories:

 BRB ductility demand: Minimal reduction in EW, 30% reduction in NS Note: Outrigger frames are in NS direction

Damper Hysteretic Response – 700 MRI Wind

40th Story @ SE: Experimental Substructure All other dampers: Real-time Model Updating is UKF

AT/LSS

REAL-TIME MULTI-DIRECTIONAL SIMULATION

UNI

VER

SITY.

NHER

Real-Time Multi-Directional Testing Facility

Damper Hysteretic Response – EQ MCE Level

40th Story @ SE: Experimental Substructure All other dampers: Real-time Model Updating is UKF

LSS

UNI

VERSITY.

Online Model Updating – UKF Variation of Nonlinear Maxwell Model Parameters

Summary and Conclusions

- The application of real-time hybrid simulation to large complex non-linear systems subject to wind and earthquake natural hazards was demonstrated.
- Using dampers, building's performance is improved (accelerations) under wind and (drift, BRB ductility) under EQ loading.

Acknowledgements

- Research reported in this presentation was performed at the NHERI Lehigh Large-Scale Multi-Directional Hybrid Simulation Experimental Facility
- Supported by the National Science Foundation (NSF) under Awards CMS-0936610 and CMS-1463497
- Financial support for the operation of the NHERI Lehigh Large-Scale Multi-Directional Hybrid Simulation
 Experimental Facility provided by NSF under Cooperative Agreement No. CMMI-1520765.
- Nonlinear viscous dampers provided by Taylor Devices Inc.

Thank you

